
This paper has been published in Annals of Mathematics and Arti�cial Intelligence,

Vol. 29 (2000), No. 1{4, pp. 139-181.

TAME: Using PVS Strategies for Special-Purpose

Theorem Proving �

Myla Archer

Code 5546, Naval Research Laboratory, Washington, DC 20375
E-mail: archer@itd.nrl.navy.mil

TAME (Timed Automata Modeling Environment), an interface to the theorem
proving system PVS, is designed for proving properties of three classes of automata:
I/O automata, Lynch-Vaandrager timed automata, and SCR automata. TAME
provides templates for specifying these automata, a set of auxiliary theories, and a
set of specialized PVS strategies that rely on these theories and on the structure of
automata speci�cations using the templates. Use of the TAME strategies simpli�es
the process of proving automaton properties, particularly state and transition invari-
ants. TAME provides two types of strategies: strategies for \automatic" proof and
strategies designed to implement \natural" proof steps, i.e., proof steps that mimic
the high-level steps in typical natural language proofs. TAME's \natural" proof
steps can be used both to mechanically check hand proofs in a straightforward way
and to create proof scripts that can be understood without executing them in the
PVS proof checker. Several new PVS features can be used to obtain better control
and e�ciency in user-de�ned strategies such as those used in TAME. This paper
describes the TAME strategies, their use, and how their implementation exploits the
structure of speci�cations and various PVS features. It also describes several fea-
tures, currently unsupported in PVS, that would either allow additional \natural"
proof steps in TAME or allow existing TAME proof steps to be improved. Lessons
learned from TAME relevant to the development of similar specialized interfaces to
PVS or other theorem provers are discussed.

Keywords: theorem proving, strategies, PVS

AMS Subject classi�cation: 68T15, 68N30, 68Q60, 18B20

1. Introduction

Developers in industry often view model checking as a more practical formal
method than theorem proving for establishing system properties. But although
model checking is an important technique for developing correct systems, it does
not solve all problems associated with veri�cation. For example, while model
checking is often regarded as automatic and therefore requiring less expertise
from the user, the user must typically model check an abstraction of a given

�This work is funded by the O�ce of Naval Research.

1

green
Text Box
NRL Release Number 00-1221.1-1945

2 Myla Archer / TAME: Using PVS Strategies

system rather than the full system. Not only is abstraction essential in model
checking software systems with in�nite state spaces, but in addition, most prac-
tical �nite state systems have such large state spaces that abstraction is still
necessary. Finding the appropriate abstraction often requires user ingenuity and
creativity. Even when abstraction is used, state explosion can prevent a model
checker from running to completion, and thus from establishing the correctness
of a property. Moreover, in speci�cations involving parameters, model checking
alone can verify correctness only for speci�c (usually small), rather than arbitrary,
values of the parameters. Thus, model checkers are often better for debugging
than for veri�cation. To verify system properties, theorem proving is usually
needed.

However, most system developers view theorem proving as impractical. The
�rst di�cult problem is to specify the system being developed in the language of
the theorem prover. The second is to master the use of the theorem prover itself,
whose proof steps are often a poor match to the reasoning steps humans naturally
use in establishing the truth of a proposition. Third, even for sophisticated users,
applying a mechanical theorem prover can require a prohibitive amount of time
and e�ort. What is therefore needed is a natural theorem-proving language that
will simplify theorem proving just as higher-level programming languages (from
FORTRAN and other early examples on) simpli�ed the programming process by
permitting programmers to think at the algorithmic, rather than the machine
language, level.

TAME (Timed Automata Modeling Environment) [4,6,5,8,3] is an inter-
face to the theorem proving system PVS [48] that provides a high-level lan-
guage for proving properties of several classes of automata used to represent
systems: I/O automata [39], Lynch-Vaandrager (LV) timed automata [40], and
SCR automata|the automata model underlying the SCR (Software Cost Re-
duction) method for specifying software requirements [2,20,25,22,21]. A major
goal of TAME is to allow users to specify and to prove properties of such au-
tomata without exceptional e�ort, and thus allow mechanical theorem proving
to become a practical part of the software development process. To achieve this
goal, TAME provides a set of speci�cation templates, a set of standard theo-
ries, and a set of specialized proof steps that allow users to create proofs using
\natural" or automatic proof steps, without learning the details of the PVS proof
steps. The templates provide users with standard ways of de�ning the parts of an
automaton|its state space, initial states, and transitions|and standard formats
for invariant properties. The special-purpose nature of the proofs, together with
the uniform speci�cation structure ensured by the templates, makes the imple-
mentation of both the natural and automatic proof steps in TAME possible.

A second important goal of TAME is to provide better user feedback than
that provided by PVS. This feedback is provided by the TAME strategies in
several ways. For SCR automata, a special feedback strategy is provided. The
TAME strategies for natural proof steps provide improved feedback when a proof

Myla Archer / TAME: Using PVS Strategies 3

fails because they are designed to create a saved proof that can be understood
without executing it in the PVS proof checker. A saved proof created with the
TAME strategies has a recognizable structure, both because the names of the
strategies correspond to the natural proof steps they implement, and because the
strategies generate comments that indicate the signi�cance of the branches in a
proof. Such information makes it easy to determine the signi�cance of the places
in a saved proof where the proof is incomplete. In addition, when a TAME
proof succeeds, it is easy to determine from the saved proof which facts were
used in the proof, and thus to determine whether a property holds for a more
trivial reason than expected. Unexpectedly trivial proofs are often the result of
a speci�cation error. In addition to feedback from saved proofs, TAME improves
the understandability of the subgoals of proofs in progress by means of labels
that indicate the origins of individual formulae.

TAME is based on a general-purpose higher-order logic theorem prover,
rather than built from scratch, for several reasons. First, there was no reason
to rebuild speci�cation, typechecking, and basic proof support when existing
systems already provide this support in well-worked-out forms. Basing TAME on
an existing general-purpose system allows its proof steps to be implemented based
on proof steps and theorems proved in the existing system. If the proof steps of
the existing system are sound, this will guarantee that the TAME proof steps are
also sound. Very powerful proof steps can be implemented in this way when the
existing system supports higher-order logic. Finally, desired additions to the proof
support TAME provides can be implemented with a small e�ort and without
low-level programming or soundness justi�cations. PVS was chosen as the basis
for TAME because it uses standard logic (most likely to be understandable by
developers), has a relatively user-friendly interface, saves rerunnable proof scripts,
and includes decision procedures that handle many low-level proof details.

TAME is not the �rst interface to PVS designed to support special-purpose
theorem proving. Earlier interfaces include a Duration Calculus Proof Assistant
[49], an interface for the TRIO logic [1], and an interface to support proofs of
invariant properties of DisCo speci�cations [33]. All of these interfaces provide
proofs steps, based on PVS strategies, intended to implement inference rules in
other logics. Unlike the strategies in these other interfaces, the TAME strategies
are not designed to support reasoning in another logic. Instead, as noted above,
they are designed to support both natural human-style reasoning and some au-
tomatic reasoning about automata models.

While not originally designed to support special-purpose interfaces, PVS has
always had features that support the creation of new high-level proof steps|a
strategy language and support for term rewriting, forward chaining, and generic
theories and other higher-order features. In addition, new PVS features extend
the possible capabilities of user-de�ned strategies. Several new features have
played an important role in the re�nement of TAME's strategies. The develop-
ment of the TAME strategies has also helped to identify a few other features,

4 Myla Archer / TAME: Using PVS Strategies

currently missing in PVS, that would be helpful in supporting more high-level
human-style steps.

The TAME strategies have been used successfully in proving properties of
many speci�cations, including the Generalized Railroad Crossing problem [23,4],
the Steam Boiler Controller [35,6], a Group Communication Service [18], the
RPC-Memory problem [47,46,7,44], part of the IEEE 1394 bus protocol [15,14,
7,44], and the requirements speci�cation for a U.S. Navy communications device
[28,29]. In addition to its developers, TAME has had two other users. Reference
[7] describes the positive experience of a new TAME user (with no previous
experience with PVS), who was able to check all the proofs of invariants from
[46] and [14] in about four weeks. The feedback [13] from a user who used TAME
in verifying a secure group membership protocol was also positive, indicating that
TAME signi�cantly simpli�ed mechanizing the proofs of invariants.

This paper is organized as follows. Section 2, which describes TAME's
proof support, �rst discusses the types of automaton properties for which TAME
provides proof support and then gives an overview of the major TAME strate-
gies and their use. Section 3 describes the automata models for which TAME
provides proof support, how these automata are speci�ed in TAME, and how
properties of the speci�cations are used to advantage by the TAME strategies.
It also discusses the relationship between SCR and TAME, and how other tools
in the SCR* toolset help with both specifying SCR automata and proving their
properties in TAME. Section 4 provides examples of proofs constructed with the
TAME strategies and of the feedback TAME provides. Section 5, which describes
the implementation of the TAME strategies, �rst discusses strategy construction
in PVS, and then describes the features of PVS that are particularly useful in
creating natural proof steps and in designing proof steps for e�ciency. Finally,
it illustrates how these features have been used in various TAME strategies, and
describes how the e�ciency of the automatic proof steps has been improved sig-
ni�cantly since their initial implementation. Section 6 discusses features desirable
in a theorem prover to support high-level proof steps like TAME's, and the avail-
ability of these features in PVS and in other theorem provers. Finally, Section 7
discusses further related work, and Section 8 presents some conclusions.

2. TAME Proof Support

As noted above, TAME's major goals are to simplify specifying automata
models in PVS, to simplify proving properties of these models, and to provide
the user with meaningful feedback about the proofs. The three automata models
currently supported in TAME|LV timed automata, I/O automata, and SCR
automata|possess similarities which TAME's current speci�cation and proof
support exploit. In particular, in each model, the states of an automaton are
determined by assignments to state variables, the initial states are de�ned by
a state predicate, and transitions are described by preconditions and postcondi-

Myla Archer / TAME: Using PVS Strategies 5

tions on state variable values. Associated with all the models are the notions of
execution sequence (a sequence of states connected by transitions), reachable state
(a state reachable from an initial state by an execution sequence), and reachable
transition (a prestate/poststate pair in which the prestate is reachable).

Section 2.1 describes the classes of properties of automata for which TAME
provides proof support, and Section 2.2 gives an overview of the major TAME
strategies.

2.1. Properties of Automata Supported

Properties which one may want to prove about automata include properties
of a single automaton, such as invariants and properties of timed executions, and
properties of pairs of automata, such as simulation, re�nement, or implemen-
tation. Invariant properties include state invariants (properties of all reachable
states), de�ned by predicates on the variables of a single state, and transition
invariants (properties of all reachable transitions), de�ned by predicates on the
variables of the two states in a transition. TAME provides extensive support
for proofs of invariant properties and a few strategies to support proofs of timed
execution properties. Currently, TAME does not support proofs of properties of
pairs of automata.

Timed execution properties generally express facts about the relative timing
of events. For example, the utility property in the Generalized Railroad Crossing
Problem in [23,24], a timed execution property, states (in a precise way): \If the
gate is down in the crossing, then either a train is present, a train has recently
left, or a train is about to enter." Although such properties can be regarded as
invariants of a timed system, their proofs are not as straightforward as proofs
of state or transition invariants. The proofs do not have a uniform structure,
and formulating and proving the properties requires additional de�nitions and
proof steps based on a theory of timed executions. Designing more complete
TAME style support for proving timed execution properties is a topic for further
research. However, the initial investigation of appropriate strategies for these
properties led to the desire for at least one additional capability in PVS|the
ability to do resolution-style reasoning (see Section 6).

In contrast to proofs of timed execution properties, proofs of state invari-
ants and of simulation (of which re�nement and implementation are special cases)
usually are based on induction, and thus have a standard structure, with a base
case involving initial states and a case for each possible action (or \external" ac-
tion, for simulation). This makes them especially good targets for mechanization.
Direct (non-induction) proofs are also possible for these types of properties; such
proofs are usually quite simple, and appeal to previously proved invariant or sim-
ulation properties. Transition invariants are seldom appropriate candidates for
proof by induction, since there is usually little relation between the transitions
from a given state and those from one of its successor states. These properties

6 Myla Archer / TAME: Using PVS Strategies

are usually proved from the de�nition of the possible transitions. TAME sup-
ports this type of proof along with induction and direct proofs of state invariants.
Extending TAME's proof support to cover proofs of simulation and its variants
requires a feature currently missing in PVS, but planned for a future release [36],
namely, theory instantiations and theory parameters to theories. This feature
will permit generic formulations of simulation theorems between automata that
allow separately proved state invariants of the automata to be applied in their
proofs.

2.2. Overview of the TAME Strategies

TAME provides proof steps that free the user from handling PVS proof
details that are trivial, tedious, or obscure. These proof steps are implemented
as strategies de�ned in the PVS strategy language (see Section 5.2). TAME
strategies fall into two classes: 1) those for proving properties of an automaton
of any of the classes supported in TAME, 2) those designed speci�cally for SCR
automata. The �rst class, the general strategies, allow users to mechanize a
hand proof in PVS interactively, or to construct a proof interactively that can
later be understood analogously to a hand proof|i.e., without running the proof
in PVS. These strategies support proof steps that mimic the high-level steps in
hand proofs that appear in the literature. The second class of strategies, the
SCR-speci�c strategies, are partly based on the general strategies. To the extent
feasible, the SCR-speci�c strategies e�ciently automate proofs of invariants for
SCR automata. They also provide appropriate feedback when a proof fails. These
\automatic" TAME strategies were designed to be used with the SCR* toolset,
which makes a wide variety of analyses as automatic as possible. The automatic
SCR-speci�c strategies are made possible by the relatively simple SCR automata
model and the fact that the state variables in SCR speci�cations are restricted to
boolean, enumerated, and numeric types, for which the PVS decision procedures
can handle much of the required reasoning. Appendix B contains a table listing
the major PVS strategies.

Hand proofs of state invariants usually use proof steps from a �xed set. This
�xed set of proof steps, implemented as general TAME strategies, is su�cient for
proving most state invariant properties of most of the LV timed or I/O automata
to which TAME has been applied. It is sometimes necessary to supplement the
TAME strategies with standard PVS steps: for example, use of the PVS step
INST for instantiating a universally quanti�ed formula among the assumptions is
common in TAME proofs. When the types of the state variables in an application
are complex data types, the TAME steps need to be supplemented with proof
steps for reasoning about these types. This happened in the Group Communica-
tion Service example from [18], mentioned in the introduction, in which certain
state variables were queues accompanied by special operations for manipulating
and observing their content. Despite the need to reason about these types in the

Myla Archer / TAME: Using PVS Strategies 7

invariant proofs, the TAME strategies were still very useful in mechanizing the
proofs.

The general TAME strategies designed for setting up proofs of state invari-
ants include an induction strategy AUTO INDUCT, which sets up a proof
by structural induction over the reachable states of an automaton, and a strat-
egy DIRECT PROOF, which sets up a \direct" (i.e., non-induction) proof
of a state invariant. (Here and below, names in bold capital letters refer to
TAME strategies.) State invariant proofs are then completed by introducing a
set of facts and applying straightforward reasoning such as propositional logic,
equational logic, and standard facts about data types. Guidance in the form
of case breakdowns is also sometimes used. TAME supplies several strate-
gies for introducing facts, whose names describe their purpose, including AP-
PLY SPECIFIC PRECOND for introducing the precondition of an action in
an induction step, APPLY INV LEMMA and APPLY LEMMA for using
invariant lemmas and lemmas about datatypes, and APPLY IND HYP for
applying the inductive hypothesis in an induction step.1 TAME also supplies a
strategy TRY SIMP that does most of the straightforward reasoning required,
and a strategy SUPPOSE for splitting (and labeling) cases.

Some of the general TAME strategies, such as APPLY INV LEMMA
and APPLY LEMMA, can also be used in proving other types of properties,
including transition invariants, properties of timed executions, and (in principle)
proofs of simulation. Although proof support for timed execution properties is
not extensive, TAME does supply two special strategies for these properties (see
Appendix B).

The automatic SCR-speci�c TAME strategies include SCR INV PROOF,
which proves many state and transition invariants of SCR automata automati-
cally, and ANALYZE, which is used to analyze dead ends in a proof for which
SCR INV PROOF fails. SCR INV PROOF takes advantage of the result
of an analysis by one of the other SCR* tools: the list of invariants produced
by the automatic invariant generation algorithm [31]. These generated invari-
ants can often be used to complete the proofs of dead ends reached by one of
the basic invariant proof strategies underlying SCR INV PROOF. By calling
SCR INV PROOF$ instead of SCR INV PROOF, the user can determine
from the saved TAME proof whether any of the invariants automatically gener-
ated by the SCR* invariant generator were used in the proof. This helps the user
determine whether the proof succeeded for expected reasons.

Proof dead ends generated by SCR INV PROOF correspond to a class of
transitions that may not preserve (or satisfy) the state (or transition) invariant.
Applying ANALYZE to a dead end provides the user with a subgoal whose
hypothesis contains information about this class of transitions, including:

1APPLY IND HYP is needed only in the rare case when the inductive hypothesis needs to
be applied to values other than the Skolem constants from the inductive conclusion.

8 Myla Archer / TAME: Using PVS Strategies

� Prestate and poststate values of state variables, if known,

� State variables known only to have unchanged values, and

� The input event corresponding to the transition class.

This information helps the user determine whether 1) an appeal to a state in-
variant will discharge the subgoal, or 2) some transition in the class is reachable,
and the invariant being proved is false. In some cases, ANALYZE will describe
the value of a variable in the poststate in terms of a complex expression involv-
ing many cases. Because it is unlikely that the invariant being proved would be
true for a di�erent reason in each case, ANALYZE does not further divide the
subgoal with respect to these cases. A prototype translator from the output of
ANALYZE into an easy-to-read format understandable by users of the SCR*
toolset has been implemented.

3. TAME Speci�cation Support for Automata

Because of the importance of the structure of TAME speci�cations to the
TAME strategies, this section describes in detail how LV timed automata, I/O
automata, and SCR automata are speci�ed using TAME templates, how the tem-
plates are applied by a TAME user, and how speci�c features of the templates
are used to advantage by the TAME strategies. Section 3.1 describes the tem-
plate used for LV timed automata and I/O automata; because I/O automata
are essentially LV timed automata without any references to time, the LV timed
automaton template can be used to specify automata from either class. Simple
default values are used for timing information in speci�cations of I/O automata.
Section 3.2 describes how SCR automata are speci�ed in TAME. Because SCR
automata can be viewed as I/O automata, the LV timed automaton template
could in principle also be used for SCR automata. However, as will be explained
in Section 3.2, a slightly modi�ed template is used for the sake of proof e�ciency.
Section 3.2 also describes how, in speci�cations of SCR automata, TAME bene�ts
from analyses performed by other tools in the SCR* toolset.

3.1. LV Timed Automata and I/O Automata

The LV timed automata model [40], an extension of the I/O automata model
[39], is designed to specify real-time algorithms and systems. In both models, a
system is represented as a set of individual automata which interact by means
of common actions. For veri�cation purposes, these interacting automata can be
composed into a single automaton by combining corresponding output and input
actions. Every I/O or LV timed automaton is described by a set of states, some
of which are initial states; a set of actions (input, output, and internal); and a
transition relation coupling a state-action pair with another state. The current
state is determined by the current values of the state variables. In a particular
state, individual actions may or may not be enabled.

Myla Archer / TAME: Using PVS Strategies 9

Transitions in I/O automata speci�cations are typically deterministic, so
that the transition relation can be represented as a (partial) function on states
and actions which maps a state and an action enabled in that state to a new
state. For LV timed automata, transitions are also often speci�ed determinis-
tically; however, when this model is used in specifying a hybrid system, there
may be nondeterminism [35,6]. Because experimentation has shown that proofs
of state invariant properties for nondeterministic I/O or LV timed automata are
more e�cient if the transition relation is represented as a function, the values of
variables that may be changed nondeterministically by an action are normally
represented in TAME through use of the Hilbert choice operator �.

Because the I/O automaton model and the LV timed automaton model are
similar, TAME uses the same template for both. The essential features of this
template are shown in Figure 1. The state of any LV timed automaton has
three standard variables that are time-related. These are now, whose value is the
current time, and first and last, whose values are functions mapping actions
to the lower and upper bounds on their scheduled execution times. The \basic
state" type de�ned in MMTstates is the type of the fourth state component, basic,
which covers the remaining state variables. In addition to �lling in the template,
the user must supply any additional PVS type and constant declarations needed
to support the de�nitions of MMTstates and const facts.

Currently, instantiating the template for LV timed or I/O automata must
be done by hand. For each application, the TAME strategies also require certain
auxiliary local theories and strategies associated with the template instantiation.
Although these auxiliary theories and strategies can in principle be generated
from the particular template instantiation, they also must currently be produced
by hand. An interface to generate a template instantiation and its auxiliary theo-

iii
Template Part User Fills In Remarksiii

actions Declarations of actions is a PVS datatype
non-time-passage actionsiii

MMTstates Type of the “basic state” Usually a record type
representing the state variablesiii

OKstate? An arbitrary state predicate Default is true
restricting the set of statesiii

enabled_specific Preconditions for all the enabled_specific(a) =
non-time-passage actions specific precondition of action aiii

trans Effects of all the actions trans(a,s) = state reached
from state s by action aiii

start State predicate defining the Preferred forms: s = ... or
initial states s = (# basic := basic(s)

WITH ...
... #)iii

const_facts Predicate describing relations Optional
assumed among the constantsiiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 1. Elements of the TAME template for LV timed and I/O automata.

10 Myla Archer / TAME: Using PVS Strategies

ries and strategies from minimal information provided by the user is planned. The
local theories contain lemmas that are used for rewriting and forward chaining to
expedite reasoning about \obvious" properties of the PVS datatypes appearing
in the template instantiation. The most important local strategy expands abbre-
viated representations of state variables that the user has used in �lling in the
template and in formulating properties to be proved.

The TAME strategies take advantage of several features of the template
shown in Figure 1. First, they take advantage of the uniform naming conven-
tions. Besides the standard names for the features (i.e., transition function, pre-
conditions on the actions, start state predicate, etc.), there are standard naming
conventions for the template instantiation and local strategies: the PVS theory
corresponding to the template instantiation is named <automaton-name> decls,
where <automaton-name> is the name of the automaton, and the local strategies
have names which can be computed from this name. The TAME strategies thus
can refer to standard names to obtain de�nitions of standard automaton fea-
tures, and compute the names of local strategies as needed. Second, the actions
of an automaton are represented as a PVS datatype. The induction scheme used
by TAME for proving state invariants is based on the induction scheme for this
datatype, which is automatically provided by PVS. Third, the preferred form
of the start state predicate|an equality of the state s to some record value|is
used to create an e�cient base case strategy within TAME's induction strategy.
Finally, the separation of the de�nitions of the preconditions and e�ects of ac-
tions is used in supporting a separate proof step for applying the precondition
of an action in an induction proof, making it possible to determine whether the
precondition is actually needed in any particular induction case.

3.2. SCR and SCR Automata

SCR (Software Cost Reduction) is a formal method for specifying and ana-
lyzing the requirements of safety-critical control systems. Since its introduction in
1978, the SCR requirements method has been applied successfully to a wide range
of critical systems, including avionics systems, space systems, telephone networks,
and control systems for nuclear power plants. See, e.g., [26,43,17,16,41,38]. The
SCR* toolset [25,22] is a set of tools that support development and analysis of
SCR speci�cations. SCR* supports several complementary analysis techniques,
including consistency checking, variable dependency analysis, invariant genera-
tion, model checking, and theorem proving (through TAME). An important goal
of each SCR* tool is to perform its analyses as automatically as possible.

An SCR speci�cation de�nes an SCR automaton, whose current state is de-
termined by the values of state variables falling into four classes: monitored and
controlled variables representing quantities in the system environment that the
system monitors and controls, mode classes (whose values are called modes), and
terms. Mode classes and terms are often used to capture historical information.

Myla Archer / TAME: Using PVS Strategies 11

In the SCR automaton model, the system environment nondeterministically pro-
duces a sequence of input events, where an input event is a change in the value
of some monitored variable. Executions of the system begin in some initial state,
after which the system responds to each input event in turn by making a tran-
sition to a new state. An SCR speci�cation includes assumptions about the
environment that can a�ect the behavior (e.g., the possible changes of value) of
monitored and controlled variables.

An SCR speci�cation consists of a set of tables and dictionaries. Each
dependent variable (i.e., mode class, term, or controlled variable) has a corre-
sponding table that de�nes how the value of the variable is updated in response
to an input event. Each controlled variable or term is de�ned by either an event
table describing how to update the variable on the occurrence of various events
(changes in the value of one or more variables under certain conditions) or a con-
dition table describing how to update the variable under certain conditions. Each
mode class is de�ned by a mode transition table that maps old modes to new
modes when various events occur. Besides tables, an SCR speci�cation contains
dictionaries of types, variable declarations, constant declarations, environmental
assumptions, and assertions. The assertion dictionary records required system
properties. Our experience with practical systems is that most desired system
properties are either state invariants or transition invariants.

The TAME template for SCR automata is identical to the template in Fig-
ure 1, except that trans, for e�ciency reasons, is represented as a relation rather
than a function. Matching an SCR speci�cation to TAME's SCR template is
straightforward, and, in fact, a prototype SCR-to-TAME translator has been im-
plemented [8]. The various dictionaries and tables of an SCR speci�cation can be
translated naturally into various parts of the TAME template. Most parts of the
template can be �lled in from information in the dictionaries. The contents of
the dictionaries of types and constant declarations are easily represented by PVS
type de�nitions and constant declarations. The names and types of the �elds
in the record type MMTstates correspond to the names and types of variables
in the variable declaration dictionary. The variable declaration dictionary indi-
cates which state variables are monitored variables, and thus also provides the
information needed to complete the de�nition of the actions datatype. In par-
ticular, the non-time actions in actions correspond to the monitored variables:
for each monitored variable m, there is a constructor in actions to represent
input events corresponding to changes in the value of m; this action constructor
has as parameter the new value of m. The variable declaration dictionary is also
used in a third way: because it records the initial values of the state variables,
it is used in �lling in the de�nition of the start state predicate start. The en-
vironmental assumptions dictionary records any restrictions on how monitored
variables can change. Such restrictions are in e�ect preconditions on the input
events, i.e., on the actions; therefore, they are used in completing the de�nition
of enabled specific. Besides the dynamic information on how monitored vari-

12 Myla Archer / TAME: Using PVS Strategies

ables can change, the environmental assumptions dictionary may also contain
static restrictions on the possible relations between monitored and controlled
quantities in the environment. If present, such restrictions become conjuncts in
the OKstate? predicate. Because SCR speci�cations do not contain any unin-
terpreted constants, specifying relationships among the constants is unnecessary;
therefore, the axiom const facts can be omitted (or given the default de�nition
TRUE).

The tables of an SCR speci�cation provide the information needed to �ll in
the �nal item in the template: the transition relation trans. Equation (1) shows
the high-level form of trans:

trans(s old,a,s new) = (s new = F (s old,s new)) (1)

In more detail, F(s old,s new) is a case expression over the actions. Each action
case corresponds to a change in a monitored variable that may result in changes
to some of the dependent variables. The monitored variable's new value is the
parameter to the action; changes to any dependent variables are computed from
their respective tables. Thus the form of de�nition shown in (1) expands to:

trans(s old,a,s new) =

s new = CASES a of

monvar1(monvar1value):

s old WITH f monvar1 := monvar1value,

depvar1 := update depvar1(s old,s new) (2)

... g ,

monvar2(monvar2value):

s old WITH f ... g ,

...

ENDCASES

where monvar1, monvar2, etc. are monitored variables; depvar1, etc. are depen-
dent variables; and update depvar1, etc. are update functions that compute the
updated values of dependent variables in terms of values of variables in the old
state and new state. The update function for a given variable is in turn de�ned
in terms of simpler functions of the old and new state that compute the values
of the expressions appearing in various cells of the table for that variable. Thus,
the full TAME representation of trans has multiple layers.

Information provided by other tools in the SCR* toolset|the results of dis-
jointness checks and the variable dependency analysis|are used to determine
the best representation of an SCR speci�cation in TAME. Disjointness in the
tables implies that the speci�ed SCR automaton is deterministic, and permits
the updated values of dependent variables to be speci�ed using update functions
rather than update relations. If disjointness fails to hold for one or more tables,

Myla Archer / TAME: Using PVS Strategies 13

the updated values of the corresponding variables are nondeterministic; the form
(2) above would have to be modi�ed for each nondeterministic variable to re-
place the use of an update function with some other mechanism for reasoning
about its value in the new state. Currently, TAME depends on the SCR spec-
i�cation passing all disjointness checks. Variable dependency analysis provides
information about dependencies among values of variables in the new state. This
information can be used to improve the e�ciency of proving properties of an SCR
automaton by minimizing the number of update assignments required to express
its transition relation in the form (2).

As with LV timed and I/O automata, there are auxiliary local theories and
strategies associated with any template instantiation of an SCR automaton in
TAME. These local theories and strategies, which are generated automatically
by the SCR-to-TAME translator, are more extensive than those for LV timed
and I/O automata. The local theories contain additional lemmas relating to
enumerated types (which are very common in SCR speci�cations), and the lo-
cal strategies include strategies used to apply these lemmas and to expand the
de�nition of the transition relation in a controlled way.

The TAME strategies for SCR automata exploit template features, auxil-
iary theories and strategies, and naming conventions analogously to the TAME
strategies for LV timed and I/O automata. In addition, their implementation
takes advantage of layering in the representation of the transition relation to
achieve improvements in e�ciency. Section 5.5 discusses how the e�ciency of the
automatic SCR proof strategies has been improved over time.

Because TAME requires SCR automata to be deterministic, it is in prin-
ciple possible to represent the transition relation trans as a function, as in the
LV timed automaton template. Because earlier experiments with LV timed au-
tomata found that representing trans as a relation made proofs of state invariants
less e�cient, initial experiments with representing SCR automata in TAME also
de�ned trans as a function. The experience of a colleague [30] with proving
properties of SCR automata directly in PVS led to experimentally representing
trans as a relation instead. This led to dramatic improvements in proof e�-
ciency for invariants of SCR automata. The reason for this reverse experience
with SCR automata is probably that updating an SCR automaton state is done
by successively propagating updated variable values to functions that use them to
compute updated values of further variables, where a large number of variables
and a large dependency depth may be involved. By contrast, in a typical LV
timed automaton or I/O automaton, updating the state is usually accomplished
by assigning new values to a few state variables in one stage, simultaneously.
For SCR automata, representing trans in the relational form (2) shown above
permits reasoning about an updated state without fully computing it.

14 Myla Archer / TAME: Using PVS Strategies

4. Using the TAME Strategies

This section provides examples to illustrate how the general and automatic
TAME strategies are used in proofs of invariants, and the feedback they provide
to the user. The �rst two examples are typical TAME proofs of state invariants
for an I/O automaton. The second two examples illustrate the use of the special
TAME strategies for SCR automata.

4.1. Proving Properties of an I/O Automaton

Devillers et al. [15] de�ne an I/O automaton called TIP that speci�es a tree
identify protocol, and identify a set of state invariants for TIP . Appendix A shows
the speci�cation of TIP from [15] and the invariants referred to in this section,
and indicates how the notation from [15] is rendered in TAME. The invariants
were proved by Devillers et al. using PVS directly. Hand proofs of the invariants
were constructed by Devillers [14], but no attempt was made to follow the hand
proofs in the PVS proofs. The hand proofs were constructed in the Lamport
style [34], which represents a proof in detailed tree format, with a justi�cation
for each step.

Figure 2 shows the de�nition in TAME of two of the TIP invariants, Invari-
ant I10 and Invariant I13, together with the standard TAME formulation of the
associated invariant lemmas.

hh
Inv_10(s:states): bool = (FORALL (e:Edges):

(NOT(mq(e,s)=null) & NOT(car(mq(e,s)))) => NOT(child(reverse_edge(e),s)));

lemma_10: LEMMA (FORALL (s:states): reachable(s) => Inv_10(s));

Inv_13(s:states): bool = (FORALL (e:Edges): root(target(e),s) => child(e,s));

lemma_13: LEMMA (FORALL (s:states): reachable(s) => Inv_13(s));
hh

Figure 2. Sample invariants with their invariant lemmas in TAME.

TAME proofs of Invariants I10 and I13 are shown in Figures 3 and 4. When
a user creates a proof interactively in PVS, PVS saves an executable script of
the proof. This script records both the proof steps invoked by the user and the
branching structure of the proof. In the example TAME proofs, the proof steps
supplied by the user are shown in Roman font, the names of TAME strategies are
in bold, and the parts of the proof scripts created by PVS are shown in italics.
The italic numbers in quotes represent the addresses of the proof branches in the
tree, and hence show the tree structure. The TAME proofs include comments
(in italics, and preceded by semicolons) automatically generated by the TAME
strategies.

The proofs in Figures 3 and 4 were constructed by Riccobene [44,7], who
derived TAME proofs of all of the TIP invariants from Devillers' hand proofs.

Myla Archer / TAME: Using PVS Strategies 15

hh
(""
(AUTO_INDUCT)

(("1" ;;Case add_child(addE_action)
(SUPPOSE "e_theorem=addE_action")

(("1.1" ;;Suppose e_theorem=addE_action
(APPLY_SPECIFIC_PRECOND)
(APPLY_INV_LEMMA "5" "e_theorem")
(TRY_SIMP))
("1.2" ;;Suppose not [e_theorem=addE_action]
(APPLY_SPECIFIC_PRECOND)
(APPLY_LEMMA "lemma_aux" "addE_action" "e_theorem")
(APPLY_INV_LEMMA "2" "e_theorem")
(TRY_SIMP))))

("2" ;;Case ack(ackE_action)
(SUPPOSE "ackE_action = e_theorem")

(("2.1" ;;Suppose ackE_action = e_theorem
(APPLY_SPECIFIC_PRECOND)
(APPLY_INV_LEMMA "5" "e_theorem")
(TRY_SIMP))

("2.2" ;;Suppose not [ackE_action = e_theorem]
(TRY_SIMP))))

("3" ;;Case resolve_contention(resE_action)
(SUPPOSE "resE_action=reverse_edge(e_theorem)")

(("3.1" ;;Suppose resE_action=reverse_edge(e_theorem)
(APPLY_SPECIFIC_PRECOND)
(APPLY_LEMMA "lemma_aux" "resE_action" "e_theorem")
(APPLY_INV_LEMMA "8" "e_theorem")
(TRY_SIMP))
("3.2" ;;Suppose not [resE_action=reverse_edge(e_theorem)]
(TRY_SIMP))))))

hh

Figure 3. TAME proof (nonverbose) of lemma 10 from Figure 2.

hh
(""
(AUTO_INDUCT)
;;Case root(rootV_action)
(SUPPOSE "rootV_action = target(e_theorem)")

(("1" ;;Suppose rootV_action = target(e_theorem)
(APPLY_SPECIFIC_PRECOND)
;;Applying the precondition
;;NOT (init(rootV_action, prestate))
;; & NOT (contention(rootV_action, prestate))
;; & NOT (root(rootV_action, prestate))
;; & (FORALL (e: tov(rootV_action)): child(e, prestate))
(INST "specific-precondition_part_4" "e_theorem")
(TRY_SIMP))

("2" ;;Suppose not [rootV_action = target(e_theorem)]
(TRY_SIMP))))hh

Figure 4. TAME proof (verbose) of lemma 13 from Figure 2.

16 Myla Archer / TAME: Using PVS Strategies

Each TAME proof was constructed following the case breakdown used in the
corresponding hand proof, giving the TAME proof the same tree structure as the
hand proof. The step AUTO INDUCT was used for the initial breakdown into
induction cases, and the TAME step SUPPOSE was used for the subsequent
case splittings.2 Appropriate TAME steps were used in each TAME proof to
introduce the various facts at the point where they were appealed to in the
hand proof. The TAME strategy TRY SIMP was then used to supply the
straightforward reasoning needed to complete the proofs. TAME was used in
verbose mode in the proof of Invariant I13, and in nonverbose mode in the proof
of Invariant I10. In verbose mode, the facts introduced by TAME steps are
printed as comments in the saved proof.

The uses of APPLY LEMMA in the proof in Figure 3 correspond to steps
in the hand proof where the justi�cation was \math". The mathematics used,
which concerned properties of the type \Edges" referred to in Invariants I10 and
I13, was expressed as a set of lemmas in PVS and proved in PVS. Therefore,
these steps required more creativity from the TAME user than the other steps in
the proof. The use of the PVS step INST in the proof in Figure 4 illustrates the
occasional need for a standard PVS step in a TAME proof.

As indicated above, TAME proofs, such as the proofs in Figures 3 and 4,
that are constructed using TAME's general strategies can usually be understood
completely without executing them in PVS. To illustrate this, Figures 5 and 6,
respectively, show English explanations of the TAME proofs in Figure 3 and 4
generated by a prototype translator of saved TAME proofs. The proofs in
Figures 5 and 6 can be checked by referring to the TIP speci�cation and the
TIP invariants, provided one knows that e theorem is the Skolem constant
for the universally quanti�ed variable e in the lemma being proved, and that
specific-precondition part 4 refers to the fourth conjunct of the speci�c pre-
condition of the current action. The saved-proof translator could provide more
detailed explanations by including the extra comments in verbose proofs, such as
the comment following (APPLY SPECIFIC PRECOND) in Figure 4, in the
explanations. Proof explanations such as those in Figures 5 and 6 could be fur-
ther improved by generating them directly from the TAME strategies rather than
from the saved TAME proof. This would permit yet further information, such as
the invariant itself and the signi�cance of any type-correctness proof obligations
generated by PVS, to be incorporated into the explanations. Enhancements to
the TAME strategies to accomplish this are planned.

Figures 7 and 8 show two subgoals that arise when the proof in Figure 4 is
executed. PVS represents proof goals as Gentzen style sequents; thus the object
for each goal is to prove that the conjunction of the formulae above the turnstile

2 In two cases where the invariant being proved was a conjunction of simpler invariants, the PVS
step SPLIT was used to create branches for the individual threads for the simpler invariants
that were followed in the hand proofs.

Myla Archer / TAME: Using PVS Strategies 17

(indicated by negative numbers) implies the disjunction of the formulae below
the turnstile (indicated by positive numbers). The subgoals in Figures 7 and 8
illustrate TAME's feedback in the form of comments and formula labels during
an interactive proof. The subgoal in Figure 7 is the unique subgoal returned
after the TAME step AUTO INDUCT is applied. The comment at the top
of this subgoal shows that it corresponds to the induction case for the action
root(rootV action). The actual parameter rootV action is the automatically

Proof. The proof is by induction. The base case is trivial. There are 3 nontrivial action

cases.

� Consider the action add child(addE action). The proof in this case is as follows.

Suppose �rst that e theorem = addE action. Apply the precondition of the action

add child(addE action). Apply Invariant 5 to e theorem. The rest of the proof in

this case is obvious. Suppose, on the other hand, that it is not true that e theorem =

addE action. Apply the precondition of the action add child(addE action). Apply

lemma lemma aux to addE action and e theorem. Apply Invariant 2 to e theorem.

The rest of the proof in this case is obvious. This completes the proof for the action

add child(addE action).

� Consider the action ack(ackE action). The proof in this case is as follows. Suppose

�rst that ackE action = e theorem. Apply the precondition of the action

ack(ackE action). Apply Invariant 5 to e theorem. The rest of the proof in this

case is obvious. Suppose, on the other hand, that it is not true that ackE action =

e theorem. The rest of the proof in this case is obvious. This completes the proof for the

action ack(ackE action).

� Consider the action resolve contention(resE action). The proof in this case

is as follows. Suppose �rst that resE action = reverse edge(e theorem). Apply the

precondition of the action resolve contention(resE action). Apply lemma lemma aux

to resE action and e theorem. Apply Invariant 8 to e theorem. The rest of the proof in

this case is obvious. Suppose, on the other hand, that it is not true that resE action =

reverse edge(e theorem). The rest of the proof in this case is obvious. This completes

the proof for the action resolve contention(resE action). 2

Figure 5. English explanation of the TAME proof in Figure 3.

Proof. The proof is by induction. The only nontrivial case is the single action case

root(rootV action).

� Consider the action root(rootV action). The proof in this case is as follows.

Suppose �rst that rootV action = target(e theorem). Apply the precondition of

the action root(rootV action). Instantiate speci�c-precondition part 4 with the value

e theorem. The rest of the proof in this case is obvious. Suppose, on the other hand,

that it is not true that rootV action = target(e theorem). The rest of the proof in

this case is obvious. This completes the proof for the action root(rootV action). 2

Figure 6. English explanation of the TAME proof in Figure 4.

18 Myla Archer / TAME: Using PVS Strategies

hh

lemma_13 :
;;;Case root(rootV_action)

{-1,pre-state-reachable}
reachable(prestate)

{-2,inductive-hypothesis}
(root(basic(prestate))(target(e_theorem))

=> child(basic(prestate))(e_theorem))
{-3,general-precondition}

enabled_general(root(rootV_action), prestate)
{-4,specific-precondition}

enabled_specific(root(rootV_action), prestate)
{-5,post-state-reachable}

reachable(poststate)
{-6,inductive-conclusion_part_1,inductive-conclusion}

root(basic(prestate)) WITH [(rootV_action) := TRUE](target(e_theorem))
| -------

{1,inductive-conclusion_part_2,inductive-conclusion}
child(basic(prestate))(e_theorem)

hh

Figure 7. Subgoal produced by AUTO INDUCT in Figure 4.

hh

lemma_13.1:
;;;Applying the precondition
;;;NOT (init(rootV_action, prestate)) &
;;; NOT (contention(rootV_action, prestate)) &
;;; NOT (root(rootV_action, prestate)) &
;;; (FORALL (e: tov(rootV_action)): child(e, prestate))

[-1,(Suppose)]
rootV_action = target(e_theorem)

[-2,(pre-state-reachable)]
reachable(prestate)

[-3,(inductive-hypothesis)]
root(basic(prestate))(target(e_theorem)) =>
child(basic(prestate))(e_theorem)

[-4,(general-precondition)]
enabled_general(root(rootV_action), prestate)

{-5,(specific-precondition_part_4 specific-precondition)}
FORALL (e: tov(rootV_action)): child(basic(prestate))(e)

[-6,(post-state-reachable)]
reachable(poststate)

[-7,(inductive-conclusion_part_1 inductive-conclusion)]
root(basic(prestate)) WITH [(rootV_action) := TRUE](target(e_theorem))

| -------
{1,(specific-precondition_part_1 specific-precondition)}

init(basic(prestate))(rootV_action)
{2,(specific-precondition_part_2 specific-precondition)}

contention(basic(prestate))(rootV_action)
{3,(specific-precondition_part_3 specific-precondition)}

root(basic(prestate))(rootV_action)
[4,(inductive-conclusion_part_2 inductive-conclusion)]

child(basic(prestate))(e_theorem)
hh

Figure 8. Subgoal after APPLY SPECIFIC PRECOND in Figure 4.

Myla Archer / TAME: Using PVS Strategies 19

generated Skolem constant for the formal parameter rootV of the parameter-
ized action root. Besides generating comments distinguishing the cases in an
induction proof, AUTO INDUCT gives all the formulae labels that indicate
their signi�cance. The subgoal in Figure 8 is from deeper in the proof in Fig-
ure 4, after SUPPOSE and APPLY SPECIFIC PRECOND have been ap-
plied. The comment at the top of this subgoal shows the precondition that
has been introduced. The supposition introduced with SUPPOSE is labeled
Suppose, and the individual parts of the speci�c precondition both retain their
label specific-precondition and acquire individual labels of their own indi-
cating where they came from in the introduced precondition.

4.2. Proving Properties of an SCR Automaton

As indicated in Section 2.2, there is a single automatic TAME strategy,
SCR INV PROOF, for proving both state and transition invariants. The
strategy SCR INV PROOF �rst applies a strategy appropriate to the par-
ticular invariant which takes the proof as far as possible without appealing
to other invariants. State invariants usually are proved by induction. Tran-
sition invariants (as noted in Section 2.1) are usually not proved by induc-
tion, since the fact that all the transitions from a given state satisfy the
transition invariant rarely implies anything useful about whether the transi-
tions from its successor states satisfy the invariant. A transition invariant
is normally proved by directly applying the de�nition of the transition rela-
tion trans (see Section 3.2) and, if necessary, by appealing to other invari-
ants. Thus, for state invariants, SCR INV PROOF �rst calls the special SCR
induction strategy SCR INDUCT PROOF, based on the general induction
strategy AUTO INDUCT, and for transition invariants, SCR INV PROOF
�rst calls the special SCR strategy SCR DIRECT PROOF, based on the
general non-induction strategy DIRECT PROOF. If the initial strategy ap-
plied by SCR INV PROOF does not succeed in completing the proof,
SCR INV PROOF determines whether application of invariants generated by
the SCR* automatic invariant generation algorithm will complete the proof.
As noted in Section 2.2, the user can determine which, if any, generated in-
variants were needed in the proof by using SCR INV PROOF$ instead of
SCR INV PROOF.

Figure 9 shows the formulation of a transition invariant for an SCR automa-
ton called CD (for communications device) [29]. The invariant says that if, in a
transition, backup power goes undervoltage when primary power is unavailable,
the mode of operation of the communication device after the transition is either
o� or alarm.

The TAME strategy SCR INV PROOF succeeds in proving the transition
invariant in Figure 9. Using SCR INV PROOF$ instead saves the proof in the
form shown in Figure 10. This saved proof shows that SCR INV PROOF has
proved Invariant CD 4 by �rst applying SCR DIRECT PROOF and then, on

20 Myla Archer / TAME: Using PVS Strategies

hhh
Inv_CD_4(s:states):bool =

(FORALL (a: actions, new_s:states): enabled(s,a,new_s) & trans(s,a,new_s) =>

((not(BackupPower(s) = undervoltage) & BackupPower(new_s) = undervoltage
& PrimaryPower(s) = unavailable)
=> (Operation(new_s) = Alarm OR Operation(new_s) = Off)));

lemma_CD_4: LEMMA (FORALL (s: states): reachable(s) => Inv_CD_4(s));
hhh

Figure 9. Invariant CD 4 of the SCR automaton CD .

hh
(""
(SCR_DIRECT_PROOF)

(("1" (APPLY_INV_LEMMA "Operation_Initialization"))
("2" (APPLY_INV_LEMMA "Operation_Configuration"))
("3" (APPLY_INV_LEMMA "Operation_Idle"))
("4" (APPLY_INV_LEMMA "Operation_TrafficProcessing"))))

hh

Figure 10. Proof generated for Invariant CD 4 by SCR INV PROOF$.

each of four un�nished subgoals in the proof, applying an appropriate generated
invariant. The names of the invariants used indicate that they were generated
from the table for the variable Operation in the SCR speci�cation of CD .

When a proof using SCR INV PROOF fails, the user can apply the
TAME strategy ANALYZE to any dead end in the proof to create a sequent
which exhibits the details about the class of problem transitions associated with
the dead end. Figure 11 shows a dead end reached in the proof of Invariant
WCP 5 for an SCR automaton WCP (weapons control panel) [21]. Invariant
WCP 5 expresses the property \When the pressure-hold signal is received, the
pressurize valve shuts and the vent-blocking valve opens." Figure 12 shows an
extract from the sequent produced by applying ANALYZE to the subgoal in
Figure 11. In these sequents, prestate represents the prestate of the transi-
tion, new s theorem represents the poststate, and a theorem represents the ac-
tion. The complex formula expressing the fact that prestate, a theorem, and
new s theorem satisfy trans is hidden, but used in obtaining the second sequent
from the �rst.

The second formula in Figure 12 is included as an example of a formula
stating explicitly that a variable has not changed; the other such formulae are
represented by ellipses. The formulae containing an ellipsis abbreviate formulae
equating the value of a variable in the new state with a complex expression. The
remaining formulae give explicit values known for either old-state or new-state
variables. Because mPRESSURE HOLD (corresponding to the pressure-hold signal) is
a monitored variable of WCP , the �rst and fourth formulae in Figure 12 indicate
that the input event corresponding to this transition class is mPRESSURE HOLD

changing from FALSE to TRUE.

Myla Archer / TAME: Using PVS Strategies 21

hhh

lemma_WCP_5 :

{-1,(conclusion)} mPRESSURE_HOLD?(a_theorem)
{-2,(conclusion)} mPRESSURE_HOLD_value_of(a_theorem)
{-3,(poststate-reachable)} reachable(new_s_theorem)
{-4,(prestate-reachable)} reachable(prestate)
{-5,(general-precondition)} enabled_general(a_theorem, prestate)

| -------
{1,(conclusion)} mPRESSURE_HOLD_part(basic(prestate))
hhh

Figure 11. Dead end in the proof of Invariant WCP 5.

hhh

lemma_WCP_5 :

{-1,(analysis)} mPRESSURE_HOLD(prestate) = FALSE
{-2,(analysis)}

tTRANS_SEL_B_FAIL(new_s_theorem) = tTRANS_SEL_B_FAIL(prestate)
...

{-20,(analysis)} tPRESSURIZING(new_s_theorem) = FALSE
...

{-31,(analysis)} mPRESSURE_HOLD(new_s_theorem) = TRUE
...

{-38,(analysis)} cPVC_PRESSURIZE_SOLENOID(new_s_theorem) = FALSE
...

{-39,(analysis)} tVENTING(new_s_theorem) = ...
{-40,(analysis)} tPRESSURIZING_LATCH(new_s_theorem) = ...
{-41,(analysis)} tPRESSURE_HOLD_LATCH(new_s_theorem) = ...

...
| -------
...

hhh

Figure 12. Result of applying ANALYZE to the subgoal in Figure 11.

The strategy ANALYZE is designed to support giving a user of the SCR*
toolset feedback about proof dead ends in the notation of SCR. The ultimate
goal is to permit an SCR* user to apply TAME and understand feedback from it
without having to interact directly with PVS (or TAME). As noted in Section 2.2,
there is a prototype translator of information such as that in Figure 12 into SCR
notation. In SCR notation, the value of a variable in the new state is distinguished
from the value of that variable in the old state by the addition of a prime. Thus,
in the translation of Figure 12, the �rst formula becomes mPRESSURE HOLD =

FALSE, the second becomes tTRANS SEL B FAIL0 = tTRANS SEL B FAIL, the third
becomes t PRESSURIZING0 = FALSE, and so on. The translation also presents the
information about the state variables in a more readable order. Although this
information could be deduced by a sophisticated user of TAME and PVS from the
sequent in Figure 11 extended by revealing the hidden transition relation formula,
this extended sequent is not in a form easily converted into SCR notation, and
in the general case may refer to update functions requiring computation.

22 Myla Archer / TAME: Using PVS Strategies

5. Implementing the TAME strategies in PVS

PVS was not originally designed to support strategies for special-purpose
theorem proving, but rather to support direct use of the theorem prover in a
user-friendly manner. As a result, many PVS proof commands tend to be the
\wrong size" to use as building blocks for strategies, because they do too much
for the user. Further, users were not expected to need to observe any informa-
tion about the current proof state except the currently unproved goals, or to
require any access to the PVS internals. These original design decisions created
di�culties in implementing each of the interfaces described in [49,1,33]. The Du-
ration Calculus interface required certain modi�cations to PVS, provided by a
co-author of [49], who is also one of the PVS developers. The developers of the
TRIO interface, who lacked this advantage, used a somewhat unnatural encod-
ing of the TRIO logic in PVS. The DisCo interface, which uses PVS strategies to
implement inference rules from Lamport's Temporal Logic of Actions, compiles
separate strategies for each application. TAME avoided most of these problems
by exploiting several new features added to PVS to support special-purpose in-
terfaces. These new features, which are described later in this section, both make
PVS a more \open", programmable system and support control and feedback in
some ways not available in analogous systems.

This section discusses the resources available in PVS for developing user-
de�ned strategies, and then describes how the TAME strategies have been imple-
mented and re�ned. Section 5.1 discusses how the proof rules supplied by PVS
di�er from those of other higher-order-logic theorem provers, and how this can af-
fect the implementation of strategies. Section 5.2 describes the strategy-building
commands in PVS, from which much of the control possible in user-de�ned strate-
gies is derived. Section 5.3 discusses the PVS features that were especially help-
ful in implementing the TAME strategies. It also identi�es those features new
in PVS, and those features not provided in analogous systems. Section 5.4 il-
lustrates how the various features were used to advantage in implementing the
general TAME strategies. Finally, Section 5.5 discusses how the SCR-speci�c
TAME strategies are implemented and how their e�ciency has been improved.

5.1. Using PVS Proof Steps in Strategies

As noted above, a major reason for choosing PVS as the basis for TAME is
the availability of the rule SIMPLIFY and its variants, which apply rewrite rules
together with decision procedures for propositional simpli�cation, linear arith-
metic, and equality to handle much of the low-level reasoning in a mechanized
proof. The controlled used of SIMPLIFY relieves the strategy developer, like the
direct user of PVS, of much tedium.

Developing user-de�ned strategies in PVS is similar to developing user-

Myla Archer / TAME: Using PVS Strategies 23

de�ned tactics in other higher-order-logic theorem provers such as HOL, Isabelle,
and Coq, but is di�erent in one signi�cant way: �ne control of the e�ect of a
sequence of proof steps in PVS can be di�cult to achieve because the exact ef-
fects of some of the proof rules supplied by PVS are not completely predictable.
Although the soundness of the PVS proof rules is grounded in a set of straightfor-
ward inference rules, the proof steps they e�ect do not always correspond exactly
to applications of individual basic or derived inference rules. Rather, they may
perform many transformations and simpli�cations in a single step, and may also
perform hidden operations that can inuence the amount of extra simpli�cation
performed by subsequent PVS proof steps. When PVS is used directly, this fea-
ture is normally a convenience to the user. While it can shorten the number of
steps required in a strategy, and thus be a convenience in strategy development,
it can also cause di�culty for the strategy developer.

To illustrate the di�culty that can be caused by overeager simpli�cation,
consider a particular case that initially caused a problem in TAME. When the
primitive PVS rule EXPAND is used to expand the de�nition of the outermost
function in an expression, the expansion may be accompanied by additional sim-
pli�cations of the resulting expression and additional transformations of its con-
text. As a result, the form of a context in which a de�nition has been ex-
panded may or may not change, and this can make it di�cult to select a uni-
form next step in a strategy. This caused a problem in developing the strategy
AUTO INDUCT. In doing standard reasoning about the inductive conclusion
in the induction step for some action a, AUTO INDUCT must simplify the ex-
pression inv(trans(a,s)). This expression asserts that the invariant inv holds
for trans(a,s), the value of the state reached from s by a transition on the
action a. Whenever, for a particular action a, applying EXPAND to trans in
inv(trans(a,s)) simpli�es trans(a,s) to an expression of the form IF b THEN

s1 ELSE s2, extra transformations are then applied that change inv(IF b THEN

s1 ELSE s2) into IF b THEN inv(s1) ELSE inv(s2). When inv is a univer-
sally quanti�ed invariant, expanding its de�nition then leads to two embedded
universal quanti�ers, each of which must ultimately be skolemized. This led to
a problem with �nding a uniform way for AUTO INDUCT to coordinate the
skolemization of the inductive conclusion with the instantiation of the inductive
hypothesis. This particular problem can be solved by expanding the de�nition
of inv before expanding that of trans; however, the need to order de�nition
expansions complicates the process of designing a strategy.

To some extent, one can achieve the e�ect in PVS of applying individual
inference rules by supplying special arguments to PVS steps to focus them on
particular formulae or limit the operations they perform. Recent enhancements
to PVS include the addition of several �ner-grained steps which increase the
degree to which this can be done. For example, a version of EXPAND that
simply expands a function de�nition can now be e�ected by supplying an optional
extra argument to EXPAND. This �ner-grained EXPAND is what TAME uses

24 Myla Archer / TAME: Using PVS Strategies

to circumvent the problem of coordinating skolemization and instantiation in its
induction strategies.

A second di�erence between the proof rules provided by PVS and those
of analogous higher-order logic theorem provers that can complicate strategy
development is that they occasionally generate \extra" subgoals corresponding to
type correctness conditions (TCCs). This di�erence exists because of the richness
of the PVS type system, which permits predicate subtypes and dependent types.
The possible generation of these extra subgoals must be considered when de�ning
a strategy whose correctness depends on known branching structures arising at
certain points in its execution.

5.2. The Strategy Language of PVS

The standard PVS commands can be classi�ed into rules and \strategicals"3

(i.e., strategy-building commands), the latter being PVS commands analogous to
the tacticals of other theorem provers such as HOL, Isabelle, or Coq. Proof com-
mands in PVS are either primitive rules, de�ned rules, or strategies built from
rules and other strategies with the strategicals. The strategicals include com-
mands for sequencing, backtracking, choosing the next proof command, treating
generated subgoals in distinct ways, repetition, and other purposes. Most of the
PVS strategicals have close analogues in other theorem proving systems, but two
seem to be unique: APPLY, which turns a strategy into a de�ned rule (i.e., makes
the strategy act as a single proof step), and WITH-LABELS, which is used to
label the new formulae inside the subgoals generated by a proof step. A table
listing and describing the major PVS strategicals can be found in Appendix C.

Combining PVS proof rules using the strategicals produces simple PVS
strategy expressions that can be used as strategies directly. However, it is pos-
sible to de�ne more complex strategies using Common Lisp, the implementation
language of PVS. To support the use of Common Lisp in strategy de�nitions,
PVS provides a Lisp macro defstep. This macro expects as arguments the
strategy name, a list specifying the strategy's arguments, the strategy body, and
two strings used to describe the successful and error behaviors of the strategy
when it is used interactively. The strategy body is a Lisp expression which, when
the strategy's arguments are supplied, must evaluate to a simple PVS strategy
expression; thus, user de�ned rules and strategies created using defstep are al-
ways conservative extensions of the standard set of PVS proof rules, in the sense
that no inference can be made by a user de�ned rule or strategy that could not
be made by applying an appropriate selection of standard PVS proof rules with
appropriate arguments.

3 The term \strategicals" is used in this paper for brevity; it is not o�cial PVS terminology.

Myla Archer / TAME: Using PVS Strategies 25

5.3. PVS Features Useful in Strategy Development

PVS provides several features useful in developing user-de�ned strategies:

1. Availability of \baby steps"

2. Support for backtracking

3. Support for rewriting

4. The ability to de�ne and apply generic lemmas

5. Access to data structures and functions used by the proof engine

6. Support for forward chaining

7. The ability to hide and reveal formulae

8. Support for labeling formulae

9. Support for comments

The �rst six of the above features are available in other higher-order logic systems
to a greater or lesser degree than in PVS. The last three features appear to be
unique to PVS. All nine features are used to advantage by TAME's strategies.

Features 5, 8, and 9 are recent additions to PVS. As noted above, Feature
1, which can be necessary for �ne control in user-de�ned strategies, has been
recently enhanced. The absence of Feature 5 created many of the di�culties
mentioned above for the earlier PVS interfaces for TRIO [1] and DisCo [33] as
well as di�culties in the earliest version of TAME.

5.4. Implementing Natural Proof Steps in TAME

This section provides four examples that illustrate the techniques by which
TAME's general strategies are implemented using the PVS features described
in Section 5.3. Each example �rst describes a natural proof step supported in
TAME, and then describes how the TAME strategy providing this step is imple-
mented. These examples include AUTO INDUCT, one of the most complex
TAME strategies; APPLY IND HYP, representative of a very simple TAME
strategy for which AUTO INDUCT lays the groundwork; TRY SIMP, a
strategy that relies heavily on the local theories and strategies generated for
a speci�cation; and USE EPSILON, a strategy that uses access to the proof
state to relieve the user from having to supply many tedious details to accomplish
a simple proof step.

Example 1: AUTO INDUCT. This strategy performs the work represented
in a typical natural language proof of a state invariant by the phrase \the proof
is by induction". It both sets up the induction proof and performs many of the
standard steps that are implicit at the beginning of a natural language proof.
The induction being referred to is structural induction over the reachable states
of an automaton, in which the proof is broken down into cases: a base case,

26 Myla Archer / TAME: Using PVS Strategies

and an induction step for each action. In a typical hand proof \by induction",
the expansion of certain de�nitions|such as (for induction steps) the e�ects of
the individual actions and the invariant in the prestate and the poststate of the
transition|is implicit. In addition, when any of the cases|the base case and
any of the action cases|is trivial, this is often noted, with no further discussion
of the case. Finally, many state invariants (such as those in Figure 2 in Section 4)
are universally quanti�ed, and in the proof of such invariants, it is very common
for the quanti�ed variable to be specialized in the same way in both the inductive
hypothesis (\the invariant holds in the prestate") and the inductive conclusion
(\the invariant holds in the poststate") in every induction step. Doing this usu-
ally (though not invariably) is a su�cient application of the inductive hypothesis
in the proof. AUTO INDUCT performs all the steps indicated above auto-
matically. In addition, any proof goals it returns are formulated in a way that
supports the subsequent application of other TAME steps.

The techniques used in implementing AUTO INDUCT use almost all of
the features discussed in Section 5.3. AUTO INDUCT uses two generic lemmas
from a generic parameterized theory machine. The �rst generic lemma, which
expresses the equivalence of a structural induction proof that an invariant holds
in all reachable states to a proof of the same fact by mathematical induction
over the number of automaton steps to reach a state, is used in transforming the
original goal of proving a property to be an invariant into a structural induction
proof. The second generic lemma infers the reachability of the poststate in a
transition from the reachability of the prestate of the transition, and includes it
among the hypotheses, to facilitate applying invariant lemmas to the poststate
as easily as to the prestate.

Access to the PVS data structures is used by AUTO INDUCT to obtain
the list of constructors from the actions data type, together with the parameter
list of each constructor. This information is then used in computing standard
Skolem constant names for an action's parameters, in computing an expression
for each action in which the action constructor is applied to the Skolem constants,
and, �nally, in computation of a command list argument to the PVS strategical
BRANCH. The resulting BRANCH command performs the standard initial steps,
such as de�nition expansions, in the individual branches of an induction proof,
and uses the comment feature to annotate the branches, annotating the base case
with Base case and each action case with the expression computed for the action
(as in Figures 3 and 4). Using the same specializations for universally quanti�ed
variables in both inductive hypothesis and inductive conclusion in each induction
step is done by coordinating skolemization of the inductive conclusion with instan-
tiation of the inductive hypothesis. To do this, AUTO INDUCT refers to these
formulae by the labels inductive-hypothesis and inductive-conclusion it
has attached to them as they are produced. As noted above, care has to be
taken when expanding the de�nition of the transition relation trans to avoid a
transformation of the inductive conclusion that interferes with its skolemization.

Myla Archer / TAME: Using PVS Strategies 27

Thus, the \baby step" version of EXPAND is used in expanding trans.
AUTO INDUCT attempts to discharge any subgoals among the base and

action cases that a human would consider trivial. It �rst installs the lemmas
from a mix of generic and application-speci�c theories as auto-rewrites in PVS.
Thereafter, these rewrite rules are invoked by any appeal to the PVS command
ASSERT. A subsidiary strategy that usually proves the base case automatically
does a substitution based on the start state formula (using its label start-state),
provided this formula is in the preferred form of an equality (see Figure 1), and
then calls ASSERT. Typically, several of the action cases are also trivial, and can
be proved using the sequence of PVS steps LIFT-IF, PROP, ASSERT. Because
this sequence may split the subgoal,AUTO INDUCT uses backtracking, if nec-
essary, to avoid returning multiple subgoals. Thus, the proof attempt is actually
done with the (auxiliary) strategy

(APPLY (THEN (LIFT-IF) (PROP) (ASSERT) (FAIL))); (3)

which executes the above PVS steps and backtracks if they fail to prove the sub-
goal.4 Experience with checking natural language proofs of invariant properties
with TAME has shown that there is a close correlation between the action cases
considered trivial by various authors [24,37,35,50] and the action cases proved
automatically by the strategy (3).

Example 2: APPLY IND HYP. As indicated in Example 1, for a universally
quanti�ed invariant, the appropriate instantiation of the inductive hypothesis is
usually the Skolem constant or constants from skolemization of the inductive
conclusion. However, this is not always the case; it may be required in a proof to
apply the inductive hypothesis to a di�erent argument or arguments. The imple-
mentation of the strategy APPLY IND HYP that performs this step is very
simple: it temporarily reveals the hidden formula labeled inductive-hypothesis
that was created by AUTO INDUCT, and instantiates it with whatever argu-
ments the user supplies. This instantiation leads to the formula being hidden
again (by PVS).

Example 3: TRY SIMP. This strategy attempts to implement the proof step
\it is now obvious" in proofs of properties of automata. PVS supplies a com-
mand GRIND, whose purpose is to prove many assertions totally automatically,
but this command does both more and less than what is needed for the \it is
now obvious" step in TAME.5 TRY SIMP does more than GRIND by more
extensively automating simple reasoning about data types. For example, if con
and des are a corresponding constructor-destructor pair in a datatype A, it is
obvious to a human that con(des(a)) = a whenever a is a \con" value of A.

4 For the meanings of the PVS steps and \strategicals" in this strategy, see Appendix C.
5 The command GRIND can also be called with arguments to make it do somewhat less, but
even then does more than desired for TRY SIMP.

28 Myla Archer / TAME: Using PVS Strategies

TRY SIMP also makes this inference, but GRIND does not. TRY SIMP
does less than GRIND by not performing the skolemization, instantiation, uni-
versal de�nition expansion, and massive rewriting done by GRIND. Because it
does less than GRIND in these respects, a call to TRY SIMP in the middle of
a proof produces subgoals that are less obscure than those produced by a call
to GRIND. While TRY SIMP can be used in the middle of a proof, it is more
appropriately used as the �nal step in the proof of a goal (as in Figures 3 and 4),
because it does not document in a saved proof the signi�cance of any case splits
it causes.

The implementation of TRY SIMP depends heavily on the auxiliary the-
ories generated from an instantiation of the automaton speci�cation template.
The lemmas in these theories are used as temporary auto-rewrites and for forward
chaining. TRY SIMP also uses propositional simpli�cation, the PVS decision
procedures, and substitution of equals for equals. Because quanti�ed formulae
are usually irrelevant in the �nal stage of proving a subgoal, TRY SIMP uses
access to the proof state to identify, label, and hide them. In the rare cases
where the quanti�ed formulae are in fact relevant, TRY SIMP continues sim-
pli�cation after restoring these formulae to the sequent. While this approach
causes TRY SIMP to take longer in a few cases, it nearly always increases the
execution speed of TRY SIMP noticeably when quanti�ed formulae are present.

Example 4: USE EPSILON. As indicated in Section 3.1, a convenient way
to specify hybrid automata in which the e�ects of time passage on variables
representing quantities in the environment are known only approximately is to
specify the new value of each such variable as epsilon(p), where epsilon is the
Hilbert �, and p is an appropriate predicate describing the set of possible values.6

When reasoning about the � expression epsilon(p), one must usually introduce
the fact that p is true of epsilon(p). This is done in PVS by applying an �

axiom from the parameterized theory epsilons[t:TYPE] in the PVS prelude:

epsilon ax: AXIOM

FORALL (p:pred[t]): (4)

(EXISTS (x:t): p(x)) => p(epsilon(p))

Applying this axiom poses several inconveniences to the PVS user. First one
must introduce a particular instance of the axiom|that is, one must supply the
type t of the argument of the predicate p. If only one � expression involving a
predicate with a particular argument type t is present, the � axiom can be applied
to that predicate with the PVS command USE("epsilon ax[t]"). However, if
more than one such � expression is present (as can happen in proofs of properties
of hybrid automata), a second inconvenience is that one must also supply the

6 This use of epsilon is valid for establishing invariant properties of a hybrid automaton.

Myla Archer / TAME: Using PVS Strategies 29

predicate p. The declaration of one such predicate p taken from the TAME
representation [6] of the steam boiler controller speci�cation from [35], is:

water level pred(q old:water level,

pr:num pumps,

v old, v new:nonnegreal, (5)

delta t:(fintime?))

(q new:water level):bool = ...

The full name of this (parameterized) predicate is a complex expression involv-
ing �ve parameters, and being required to type in this expression (no mistakes
allowed!) simply to apply the � axiom would be an extreme inconvenience. Once
the appropriate application � axiom has been introduced as a new formula, there
is a third inconvenience: additional proof steps are needed to expand the de�-
nition of the predicate and split o� the hypothesis of the � formula as a proof
obligation.

The strategy USE EPSILON allows the user to apply the Hilbert � axiom
with only minimal e�ort when proving invariants of hybrid automata. Note that
the � axiom is only used in a proof to introduce facts about an � expression already
present in the current subgoal. As a result, the �rst two inconveniences noted
above can normally be eliminated by probing the current proof state to deduce
both the actual parameters of the parameterized predicate and its argument type
simply from the parameterized predicate's name. This information can usually be
deduced because it is rare to have two � expressions present involving the same
parameterized predicate. The third inconvenience|the additional proof steps
required|is easily eliminated by including these steps in the strategy. Thus, when
an instance epsilon(water level pred(...)) is present, the user (usually)
needs only to type

(USE EPSILON "water level pred")

to introduce the fact that the instance epsilon(water level pred(...)) satis-
�es the expanded water level pred(...) into the proof (with an accompanying
existence proof obligation).

5.5. Implementing Automatic Strategies in TAME

This section discusses the implementation and e�ciency of the two SCR-
speci�c strategies SCR INV PROOF and ANALYZE. It describes how the
strategies SCR INDUCT PROOF and SCR DIRECT PROOF, on which
SCR INV PROOF is based, have been gradually made more e�cient by an
order of magnitude. It also discusses the tradeo� in e�ciency between SCR DI-
RECT PROOF and SCR INDUCT PROOF on the one hand, and ANA-
LYZE on the other.

30 Myla Archer / TAME: Using PVS Strategies

Implementing SCR INV PROOF. As noted in Section 4.2, the strategy
SCR INV PROOF applies either SCR INDUCT PROOF or SCR DI-
RECT PROOF, and then tries to discharge any resulting subgoals by apply-
ing state invariant lemmas generated by the SCR* invariant generation algo-
rithm. These invariants are currently translated by hand into TAME; a future
version of the SCR-to-TAME translator will translate them to TAME automat-
ically from the assertions dictionary in the SCR speci�cation (see Section 3.2).
SCR INV PROOF uses access to the proof state to determine whether the
invariant being proved is a state invariant or transition invariant, and calls
SCR INDUCT PROOF or SCR DIRECT PROOF as appropriate. AP-
PLY INV LEMMA with backtracking is then used with each invariant lemma;
if this fails, pairs of lemmas are tried, and so on. A more e�cient version of this
stage is planned that takes advantage of access to the current proof state to select
lemmas intelligently.

The strategies SCR INDUCT PROOF and SCR DIRECT PROOF
are quite similar after their initial stages based on AUTO INDUCT or DI-
RECT PROOF. Following these initial stages, the transition relation is avail-
able in every goal in the form of an equality of the next state to some function
of the current state and the next state. This equality is either in the form of
the right hand side of (2) in Section 3.2 or else further simpli�ed from this form.
Both strategies continue by alternating substitution of the right hand side of the
transition relation equality for the current state with simpli�cation using case
splitting, the PVS decision procedures, and other standard manipulations. How
the e�ciency of these strategies has evolved over time is described below.

E�ciency of SCR DIRECT PROOF and SCR INDUCT PROOF. The
major factor in the e�ciency with which the automatic proof strategies for in-
variants of SCR automata execute is use of the transition relation. The size
of the formula expressing the transition relation is essentially quadratic in the
number of state variables. This is because it is a CASE expression with cases
corresponding to the monitored variables, in which each case de�nes how to up-
date the dependent variables. The variable dependency analysis performed by
the consistency checker in the SCR* toolset provides information that can be
used to determine the set of dependent variables whose value will change when
any given monitored variable changes value. This information can be used to
minimize the size of the transition relation formula by minimizing the number of
variable updates appearing in the case in the CASE expression corresponding to
the given monitored variable. Doing this resulted in a dramatic (approximately
twofold) improvement in the execution speed of proofs of properties of the SCR
automaton CD mentioned in Section 4.2 (see also [29]).

Besides minimizing the size of the transition relation formula at the out-
set, carefully managing the use of this formula during execution of SCR DI-
RECT PROOF and SCR INDUCT PROOF has been the largest factor in

Myla Archer / TAME: Using PVS Strategies 31

proof e�ciency. The layered structure of the full de�nition of the transition rela-
tion trans shown in formula (2) in Section 3.2 has proved particularly important
in managing the use of the transition relation formula. Early versions of the au-
tomatic invariant strategies did not take advantage of this layering, but instead,
expanded the transition relation formula completely as soon as it was available
in a proof subgoal. In these versions, after trans is expanded, all the update
functions appearing in the resulting formula are immediately expanded, after
which the large set of functions corresponding to the individual cells of the tables
from which the update functions are derived are immediately expanded. The
result is a formula equating the new state to a huge expression. After this stage,
simpli�cation that repeatedly applies propositional simpli�cation and ASSERT
often completes the proof of the subgoal. However, to complete the proof, it is
sometimes necessary to substitute the huge expression for multiple occurrences of
the new state in the sequent, compounding the size problem, and then simplify
and (if necessary) repeat the process. This method is a brute force approach,
but has some virtues: it is straightforward, easily captured in the strategies, and
proves many properties automatically.

The complete expansion of the transition formula in the brute force ap-
proach can be particularly expensive if done naively, because PVS's EXPAND
performs some simpli�cation after expanding any de�nition, and a very large
number of de�nitions are being expanded. Because of the sometimes enormous
size of the expression being simpli�ed, the extra time required to do these many
extra simpli�cations is noticeable. All de�nition expansions in the current ver-
sions of SCR INDUCT PROOF and SCR DIRECT PROOF are instead
done with the \baby step" version of EXPAND.

These current versions also use better management of the size of the tran-
sition relation formula, resulting in some dramatic improvements. Expansion of
the transition formula now stops after trans is expanded. Rather than applying
brute force simpli�cation to try to complete the proof, both strategies instead
repeatedly use a cycle of substitution of the relatively high-level formulation of
the transition relation for occurrences of the new state in the sequent, followed by
some simpli�cation, temporary hiding of the transition relation, full expansion of
visible update functions, and the simpli�cation step from the original strategies.
This change alone resulted in a three-to-four-fold increase in speed, e.g., reducing
the execution time of the induction proof of one state invariant of the automaton
CD of [29] from 7904 seconds to 1768 seconds, and the execution time of the
direct proof of one transition invariant of an automaton called Autopilot from
65 seconds to 22 seconds. The exact details of how this cycle is managed and
how the steps in it are de�ned di�er slightly between SCR DIRECT PROOF
and SCR INDUCT PROOF, but have gradually been improved using several
techniques to minimize the maximum complexity of individual subgoals. These
techniques include: 1) several rewrite rules for boolean expressions that force
PVS to simplify these expressions \in place" rather than postponing their simpli-

32 Myla Archer / TAME: Using PVS Strategies

�cation until they become top-level formulae, 2) capture and use with a new label
of a simpli�cation of the transition formula that (in proofs of most invariants) is
eventually computed, and 3) control of the number of substitutions for the new
state before expansion of update functions and simpli�cation takes place. Use of
these techniques have reduced the time taken by the induction proof of the CD
property to 324 seconds and reduced the time taken by many direct proofs by as
much as 20%.7 The rewrite rules for boolean expressions are rules that frequently
apply when SCR tables are simpli�ed:

NOT(P) AND P=) FALSE (6)

P AND NOT(P)=) FALSE (7)

IF FALSE THEN A ELSE B=) B (8)

Their application often dramatically reduces the size of an expression representing
an update function.

Implementing ANALYZE. As illustrated in Section 4.2, ANALYZE causes
PVS to display the complete details of the class of problem transitions corre-
sponding to a dead end reached by SCR INDUCT PROOF and SCR DI-
RECT PROOF. ANALYZE makes heavy use of forward chaining on lemmas
from the auxiliary theories to force PVS to display in the antecedent (i.e., as
positive assumptions) of the subgoal it produces all the information in the dead
end proof goal relevant to the class of problem transitions, including either the
actual value of each variable in the current state and next state or the relation
between these two values. To accomplish this, forward chaining on many lemmas
is sometimes needed. For example, for a state variable x of any enumerated type
with values v 1, v 2, ... , v n, PVS may display the fact that x has value
v 1 in state s by displaying the formulae x(s) = v 2, ... , x(s) = v n in
the consequent of the sequent. To force x(s) = v 1 to appear in the antecedent,
ANALYZE must forward-chain on the lemma

NOT(x(s) = v 2) AND ... AND NOT(x(s) = v n) => x(s) = v 1: (9)

For the enumerated type v 1, v 2, ... , v n, n such lemmas are needed.
When the variable x takes boolean values, the fact that its value is FALSE in state
s is normally represented in a sequent by simply putting x(s) itself as a formula
in the consequent. Putting x(s) = FALSE in the antecedent is done by forward
chaining on the lemma

NOT X => X = FALSE: (10)

7All proof times are for PVS 2.1 on an UltraSPARC-II. Using PVS 2.3, the induction proof of
the CD property runs in 286 seconds, and the direct proof of the Autopilot property runs in
19 seconds.

Myla Archer / TAME: Using PVS Strategies 33

However, unconstrained use of this lemma can put many undesired facts in the
antecedent. ANALYZE uses access to the current proof state to compute the
formula numbers of consequent formulae of undesired form, label these formu-
lae, and hide them temporarily before forward chaining on the above lemma is
performed. Whether this is more e�cient than forward chaining on the set of
lemmas

NOT x(s) => x(s) = FALSE (11)

where x ranges over all boolean-valued state variables is a question for further
study. To compute the values of new state variables and display the results in
the antecedent, ANALYZE temporarily reveals the transition relation formula,
which has the form s new = F(s old,s new) (see formula (1) in Section 3.2),
and uses forward chaining on the lemma

s 1 = s 2 => x(s 1) = x(s 2) (12)

for every state variable x, followed by a weakened version of SIMPLIFY and any
needed computations of update functions. Since SIMPLIFY tends to eliminate
as redundant much of the information produced by ANALYZE, the order in
which the steps in ANALYZE are done must be carefully controlled.

E�ciency of ANALYZE: a Tradeo�. Unfortunately, making the strategies
SCR INDUCT PROOF and SCR DIRECT PROOF more e�cient has re-
quired ANALYZE to do more work than it once did. The version of ANA-
LYZE that went with the original SCR INDUCT PROOF and SCR DI-
RECT PROOF was more e�cient than the current version; the original ver-
sion analyzed a proof dead end in only a few seconds, but the current version
can take a minute or even longer. This is because the brute force method us-
ing full expansion of the transition relation essentially precomputes the details
of the values of variables in the new state of a transition, which is much of
the information ANALYZE is intended to display to the user. With the new
versions of SCR INDUCT PROOF and SCR DIRECT PROOF, ANA-
LYZE frequently must expand several update functions and perform further
simpli�cations that were previously unnecessary. Even though ANALYZE
has become less e�cient, due to the great improvement in the e�ciency of
SCR INDUCT PROOF and SCR DIRECT PROOF, the combined time
required by either invariant strategy followed by ANALYZE is usually a small
fraction of that previously required.

6. Discussion

The techniques used in implementing TAME rely on the PVS features dis-
cussed in Section 5. The same techniques could almost certainly be used in
any higher-order-logic theorem prover with similar features to implement special-

34 Myla Archer / TAME: Using PVS Strategies

purpose tools such as TAME, i.e., tools which support both natural, human-style
reasoning and automatic reasoning in a particular problem domain. Several fea-
tures are missing in PVS that would extend the set of techniques available, and
allow improvements and extensions to the set of strategies supporting \natural"
proof steps in TAME. This section describes some of these missing features and
how they could be used to simplify, improve, or extend the TAME strategies. It
then discusses the availability of both the existing and missing features in various
other theorem provers.

6.1. Supporting Natural High-level Proof Steps in PVS.

Reference [5] lists a number of features missing in PVS that would allow
improved or additional high-level proof steps to be implemented as user-de�ned
strategies. Most of these, plus further missing but potentially useful features, are
discussed below.

Skolemization and instantiation of embedded quanti�ed formulae. The need to
raise an embedded quanti�ed formula to the top level in PVS before it can be
skolemized or instantiated often interrupts the ow of reasoning natural to the
user, and can result in multiple proof branches where a single branch would suf-
�ce. This problem has arisen in several applications, including one mechanized
in TAME by Riccobene [7]. A partial solution was achieved by implementing the
TAME strategies SKOLEM IN and INST IN (see Appendix B), but while
these strategies often work well, they do not always have the desired e�ect: they
sometimes result in multiple subgoals which have identical proofs, and thus re-
quire more e�ort than should be necessary on the part of the user.

Besides being a direct user convenience in interactive proofs, the ability to
skolemize and instantiate embedded formulae can also be useful for internal steps
in strategies. An important part of the philosophy behind TAME is that the
user should be relieved of the need to formulate properties for the convenience of
the theorem prover. Thus, AUTO INDUCT should work equally well on the
alternative (but equivalent) formulations

(EXISTS (r: train): status(r,s) = I)

=> gate status(s) = fully down (13)

and

FORALL (r: train):

status(r,s) = I => gate status(s) = fully down (14)

of an invariant of state s of the automaton systimpl from the solution to the
Generalized Railroad Crossing problem in [23]. The �rst formulation more di-
rectly expresses the invariant \If there is a train in the intersection, then the
gate is fully down." But currently, AUTO INDUCT handles only the second

Myla Archer / TAME: Using PVS Strategies 35

formulation automatically. Support for skolemization and instantiation of em-
bedded quanti�ers would allow the coordinated skolemization and instantiation
performed by TAME's strategy AUTO INDUCT to be extended beyond prop-
erties (such as (14)) formulated using top-level universal quanti�ers to include
properties (such as (13)) formulated with embedded quanti�ers.

Uniform treatment of subformulae in propositional reasoning. The e�ects of cer-
tain PVS commands are not always uniform. For example, when formulae A and
A => B appear in the antecedent of a subgoal, the command ASSERT is able to
deduce B if A is a ground level formula, but not if A is a more complex formula,
e.g., a disjunction or a quanti�ed formula. The varying behavior of ASSERT is
the result of a decision made for e�ciency reasons. However, for the behavior of
PVS commands in a user-de�ned strategy to be more predictable, it would be
helpful to have the option of even-handed treatment of all formulae.

Extended arithmetic decision procedures. For hybrid automata in which the up-
dated values of state variables representing real-valued quantities in the environ-
ment are computed using nonlinear arithmetic expressions, the PVS arithmetic
decision procedures are frequently inadequate to perform the arithmetic reason-
ing required in the proof of a property. Reference [6] identi�ed several facts about
real arithmetic, mostly having to do with the signs of products of quantities of
known sign, that were a su�cient supplement to PVS's arithmetic decision proce-
dures to complete most proofs of properties of an example hybrid automaton that
required reasoning about nonlinear real arithmetic. While a decision procedure
for all nonlinear arithmetic is not possible, an extension to the linear arithmetic
decision procedure that takes these properties into account should be possible,
and would likely be very helpful in proving properties of hybrid automata.

Parametric polymorphism. The need for parametric polymorphism or some
mechanism of equivalent power and convenience has arisen in a few contexts
in TAME. One such context is in the use of the Hilbert � operator in specify-
ing and proving invariants of hybrid automata (see Section 3.1). The manner
in which the axiom epsilon ax must be used (see Section 5.4) would be much
simpler if parametric polymorphism were supported, since the domain type of the
predicate to which it is applied would not need to be supplied. A second context
in which parametric polymorphism would be helpful is in the general theory of
timed executions for LV timed automata. In proofs of properties of timed execu-
tions, it can be helpful to use a predicate on state components of arbitrary type
expressing the fact that a particular state component is not changed by a time
passage action. Parametric polymorphism would make it possible to include the
de�nition of this predicate in the theory of timed executions. As noted in Sec-
tion 5.3, it is possible to achieve some of the e�ect of parametric polymorphism in
PVS through the use of theories with type parameters. In particular, importing
the generic form of a theory with a type parameter into a speci�cation allows the

36 Myla Archer / TAME: Using PVS Strategies

user to use instances of functions de�ned in the generic theory in the speci�ca-
tion. However, when one wants to apply a lemma from the generic theory in a
proof when expressions from multiple theory instances are present, the user must
either invoke the correct lemma instance (by supplying the name or names of the
type parameters to the generic theory) or else have imported all relevant theory
instances into the speci�cation.

Resolution-style steps. First-order resolution is one approach to automatic the-
orem proving that can be particularly useful for deducing a property by forward
reasoning based on uni�cation and a small body of facts. Reasoning of this kind
is needed in discharging the proof obligations accompanying some of the exper-
imental TAME proof steps for reasoning about execution sequences. However,
there is not yet a good way to automate this reasoning in PVS, and thus relieve
the user of tediously proving the \obvious" in these cases.

Stable access to proof state details. Currently, certain details of the proof state
are found by deep probing, sometimes of depth twenty or more, into the object
structure of the PVS proof state. This object structure is not fully documented,
and thus a user wishing to access it to support a strategy must �nd the details
by experiment. There are two sources of instability in the object structure.
First, this structure has changed over various PVS versions. Second, attempting
the proof of a theorem can actually change the internal representation of the
theorem; that is, the �rst and later proof attempts will be applied to di�erent
representations. As a result, certain computations of speci�cation and proof
state information done by the TAME strategies have to be performed di�erently
depending on both the PVS version and the PVS session history, even though
the basic information required by the TAME strategies remains the same. A
documented, uniform way of accessing this information would be very helpful
both in designing the code for strategies and in assuring that this code will
always produce the intended result.

6.2. Applying Techniques Used in TAME in Other Theorem Provers.

Many of the PVS features used in developing the TAME strategies are avail-
able in other higher-order logic theorem provers, as are some of the \missing"
features. HOL, Isabelle, and Coq all have extensive strategy languages, and are
open systems in which access to the current proof state should be possible. The
basic inference rules of these systems provide the type of \baby steps" that were
added to PVS to support TAME (and similar applications). These systems all
have some form of support for term rewriting, and some decision procedures have
been added to HOL and Isabelle. HOL supports a degree of resolution theorem
proving, and a simple HOL resolution tactic implements forward-chaining. Be-
cause Isabelle can be used to support HOL, the same is true of Isabelle. Isabelle
has some support for automated backtracking. All the systems support appli-

Myla Archer / TAME: Using PVS Strategies 37

cation of lemmas, and because of parametric polymorphism, at least HOL and
Isabelle support generic lemmas in somewhat more convenient form than PVS.
The Stanford Temporal Prover STeP (see, e.g., [9]), which is not a higher-order
system, is an example of a system supporting skolemization and instantiation of
embedded quanti�ed formulae.

Because the abilities to hide and then reveal formulae and to label formu-
lae seems so far to be unique to PVS, it would be di�cult if not impossible to
implement steps in other systems that do precisely the work of the TAME steps
that rely heavily on these features for their behavior. It is probable that the ad-
dition of formula labels in other systems would simplify de�nitions of tactics and
strategies in these systems, and the further addition of the ability to temporarily
hide and then reveal formulae, used in conjunction with labels, would allow im-
provements in execution e�ciency of their tactics or strategies in analogy to the
way they support execution e�ciency in TAME.

7. Related Work

Strategies in theorem proving have two major purposes. One is to allow
propositions to be proved automatically; the other is to provide proof steps that
advance an interactive proof while saving the user from explicitly applying many
�ne-grained steps. TAME uses strategies for both purposes. Proof planning,
which has been widely used and documented (see, e.g., [45]), is prominent among
approaches to creating tactics for complete proofs|as was done for HOL in [10]|
as well as partial proof steps. Such tactics are automatically developed from
a proof plan. To support such automatic proof development, proof plans are
speci�ed formally and in considerable detail in a special language. An analogy
can be drawn between the use of TAME and the use of proof planning: the general
TAME strategies can be viewed as simplifying the translation by a user, in the
limited domain of automata models, of a \proof plan" in the form of a hand proof
of a property into a mechanized proof of the property. The essential part of the
plan provided by a hand proof is its content rather than its form; TAME has been
used to translate both Lamport-style hand proofs (see Section 4.1), and natural
language hand proofs (see, e.g., [4,6]). Of course, TAME does not mechanize the
translation, and is limited to theorem proving in one application domain.

Much work, of which [11,12,42] is only a very small sample, has been done
to develop strategies or tactics to support high-level proof steps rather than to
accomplish whole proofs. The advances in a proof to which these high-level steps
correspond may or may not match high-level steps in human reasoning, as those
in TAME attempt to do. The use of proof planning for normalization in [11]
supports a type of proof step|normalization of an expression|that represents
an identi�able high-level step meaningful in a human-style proof. By contrast,
several of the proof steps (implemented in Isabelle) provided in DOVE [12] simply
manipulate the current proof goal to prepare it for the application of further proof

38 Myla Archer / TAME: Using PVS Strategies

steps. Reference [42] describes a general framework for proving properties of I/O
automata of all kinds. The extent of the resemblance of the Isabelle tactics of
[42] for proving invariant properties of I/O automata and the TAME strategies
for invariants has yet to be studied.

There are several tools that support reasoning about automata models, in-
cluding [19,9,12,42]. The tools described in [19] (based on Larch) and in [42]
(based on Isabelle) support reasoning about I/O automata, while the tool DOVE
described in [12] (based on Isabelle) and the tool STeP described in [9] support
reasoning about automata represented as transition systems. The Larch prover
LP does not support strategies, and strategy support in STeP is very minimal;
both systems expect users to establish properties using a �xed set of steps, some
of which invoke decision procedures. Both DOVE and the I/O automata environ-
ment of [42] use Isabelle tactics to support reasoning about automata. As noted
above, the environment of [42] supports proofs of many kinds of I/O automata
properties. The TAME work has instead concentrated on the problem of making
theorem proving practical in developing systems modeled as automata, and on
the most immediate need of most developers|the ability to establish invariant
properties of their designs. How the tactics of [12] and [42] compare to the TAME
strategies has been discussed above. None of the tools in [9,12,42] save proofs,
and those saved by the Larch-based tool [19] bear no clear relation to hand proofs.

There is a body of work related to the use of comments and labels in theorem
proving. Two examples are [32] and [27], which discuss the use of proof annota-
tions. Both [32] and [27] describe the use of annotations guide automatic proof
search. The annotations of [32] are entered by the user, while some annotations
in [27] can be computed from other annotations. The closest analogue of such
annotations in TAME is labels; though comments are automatically computed
in TAME, they are provided as explanation to the user rather than for guiding a
proof. TAME assigns labels automatically, and computes some of them such as
the labels on formulae introduced through a lemma. As with comments, labels
provide a degree of explanation to the user; however, TAME also uses them to
guide the proof. Labels in TAME do not provide nearly the amount of informa-
tion that can be provided by the annotations described in [32] and [27], and thus
cannot be used as extensively for proof guidance. Nevertheless, they have been
very valuable for this purpose in TAME.

8. Conclusion

The TAME strategies are designed to make the veri�cation of automata
models more practical in software development. To accomplish this, they im-
plement theorem prover steps that mimic the high-level proof steps natural for
humans, and for one automata model|SCR automata|provide a step that au-
tomatically proves many invariant properties. The TAME proof steps not only
make it possible to use a theorem prover (PVS) to prove many properties of soft-

Myla Archer / TAME: Using PVS Strategies 39

ware speci�cations and designs without expert knowledge of the theorem prover,
but reduce the e�ort required even for an expert. Moreover, use of the natural
proof steps in TAME results in saved PVS proofs whose signi�cance is clear,
because their structure and proof steps closely resemble those found in many
natural language proofs. Indeed, TAME proofs can be automatically translated
into natural language.

The TAME strategies illustrate several useful purposes for strategies beyond
the mere implementation of steps for executing part or all of a proof. These
purposes include 1) support for a \natural" interactive proof style, 2) meaningful
structure in saved proofs, and 3) improved user feedback. One bene�t of the
meaningful structure in saved proofs is that these proofs can provide information
on why a property holds: a property holding for unexpected reasons can indicate
an error in the speci�cation of an automaton. Improved user feedback includes
providing understandable saved proofs, using labels to explain the content of the
sequent in a proof goal, and supplying special proof steps such as ANALYZE
that transform the sequent in a proof dead end into a form that is clearer and
more informative to the user.

The current form of the TAME strategies would not be possible without
the recent addition of new PVS features and documentation. Documentation of
how to access the current proof state and other global variables maintained by
PVS has been vital to making the TAME proof steps generic. The addition of
support for labels and comments has permitted TAME to make both sequents
and saved proofs more understandable. Support for several new \baby steps",
along with labels, have permitted TAME steps to be more predictable in e�ect,
user-friendly, and e�cient.

Among the lessons learned in developing the TAME strategies is the impor-
tance of the structure of speci�cations to the development of generic and e�cient
strategies. The generic TAME proof steps depend on the template structure
followed by automaton speci�cations. The e�ciency of the TAME proof steps,
particularly the automatic strategies for SCR automata, depends on certain de-
tails of the structure of de�nitions. A second lesson learned is that analyses of
speci�cations performed by other tools can improve the e�ciency of the strategies
used by a theorem prover to prove properties of these speci�cations. In TAME,
as noted in Sections 3.2 and 5.5, such analyses of an SCR speci�cation are used
to determine the most \e�cient" de�nition structures that can be used to rep-
resent the SCR speci�cation in the theorem prover. In addition, invariants of a
speci�cation produced by an automatic invariant generator have the potential to
extend the number of invariants that can be proved by an automatic strategy.

Acknowledgements

I wish to thank Ralph Je�ords for many helpful discussions concerning proofs
of invariants of SCR automata, Steve Sims and James Kirby for implementing

40 Myla Archer / TAME: Using PVS Strategies

the prototype SCR-to-TAME and ANALYZE output translators, and Elvinia
Riccobene for the TAME proofs for TIP used as examples. I also thank Ramesh
Bharadwaj, Constance Heitmeyer, Ralph Je�ords, James Kirby, and Elizabeth
Leonard, as well as the anonymous referees, for many insightful comments that
have helped to improve this paper. Finally, I thank Natarajan Shankar and Sam
Owre of SRI International for providing requested new features in PVS.

References

[1] A. Alborghetti, A. Gargantini, and A. Morzenti. Providing automated support to de-
ductive analysis of time critical systems. In Proc. 6th European Software Engineering
Conference (ESEC/FSE'97), volume 1301 of Lect. Notes in Comp. Sci., pages 211{226.
Springer-Verlag, 1997.

[2] T. A. Alspaugh, S. R. Faulk, K. H. Britton, R. A. Parker, D. L. Parnas, and J. E. Shore.
Software requirements for the A7-E aircraft. Technical Report NRL-9194, Naval Research
Lab., Wash., DC, 1992.

[3] M. Archer. Tools for simplifying proofs of properties of timed automata: The TAME
template, theories, and strategies. Technical Report NRL/MR/5540{99-8359, NRL, Wash.,
DC, 1999.

[4] M. Archer and C. Heitmeyer. Mechanical veri�cation of timed automata: A case study.
In Proc. 1996 IEEE Real-Time Technology and Applications Symp. (RTAS'96), pages 192{
203. IEEE Computer Society Press, 1996.

[5] M. Archer and C. Heitmeyer. Human-style theorem proving using PVS. In E. L. Gunter
and A. Felty, editors, Theorem Proving in Higher Order Logics (TPHOLs'97), volume 1275
of Lect. Notes in Comp. Sci., pages 33{48. Springer-Verlag, 1997.

[6] M. Archer and C. Heitmeyer. Verifying hybrid systems modeled as timed automata: A
case study. In Hybrid and Real-Time Systems (HART'97), volume 1201 of Lect. Notes in
Comp. Sci., pages 171{185. Springer-Verlag, 1997.

[7] M. Archer, C. Heitmeyer, and E. Riccobene. Using TAME to prove invariants of automata
models: Case studies. In Proc. 2000 ACM SIGSOFT Workshop on Formal Methods in
Software Practice (FMSP'00), August 2000.

[8] M. Archer, C. Heitmeyer, and S. Sims. TAME: A PVS interface to simplify proofs for au-
tomata models. In Proc. User Interfaces for Theorem Provers 1998 (UITP '98), Eindhoven,
Netherlands, July 1998.

[9] N. Bjorner, Z. Manna, H. B. Sipma, and T. E. Uribe. Deductive veri�cation of real-time
systems using STeP. In Proceedings of ARTS'97, volume 1231 of Lect. Notes in Comp.
Sci., pages 22{43. Springer-Verlag, May 1997.

[10] R. Boulton, A. Bundy, K. Slind, and M. Gordon. An interface between CLAM and HOL.
In J. Grundy and M. Newey, editors, Proceedings of the 11th International Conference on
Theorem Proving in Higher Order Logics (TPHOLs'98), volume 1479 of Lect. Notes in
Comp. Sci., pages 67{86. Springer-Verlag, 1998.

[11] A. Bundy. The use of proof plans for normalization. In R. S. Boyer, editor, Automated
Reasoning: Essays in Honor of Woody Bledsoe, volume 7 of Automated Reasoning Series,
pages 149{166. Kluwer, 1991.

[12] T. Cant, K. Eastaugh�e, J. Grundy, M. Ozols, and et al. Dove user manual. Trusted Com-
puter Systems Group, Defence Science and Technology Organisation, Salisbury, Australia,
October 31, 1998.

[13] O. Cheiner. Carnegie-Mellon University, Private communication. February, 1999.
[14] M. Devillers. Veri�cation of a tree-identity protocol.

URL http://www.cs.kun.nl/�marcod/1394.html, 1997.

Myla Archer / TAME: Using PVS Strategies 41

[15] M. Devillers, D. Gri�oen, J. Romijn, and F. Vaandrager. Veri�cation of a leader elec-
tion protocol|formal methods applied to IEEE 1394. Formal Methods in System Design,
16(3):307{320, June 2000.

[16] S. Easterbrook and J. Callahan. Formal methods for veri�cation and validation of partial
speci�cations: A case study. Journal of Systems and Software, 1997.

[17] S. R. Faulk, J. Brackett, P. Ward, and J. Kirby, Jr. The CoRE method for real-time
requirements. IEEE Software, 9(5):22{33, Sept. 1992.

[18] A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a partitionable group
communication service. In Proc. Sixteenth Ann. ACM Symp. on Principles of Distributed
Computing (PODC'97), pages 53{62, Santa Barbara, CA, August 1997.

[19] S. J. Garland and N. A. Lynch. The IOA language and toolset: Support for mathematics-
based distributed programming. Submitted for publication.

[20] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. SCR*: A toolset for specifying and ana-
lyzing requirements. In Proc. 10th Annual Conf. on Computer Assurance (COMPASS'95),
Gaithersburg, MD, June 1995. IEEE Computer Society Press.

[21] C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and R. Bharadwaj. Using abstraction and
model checking to detect safety violations in requirements speci�cations. IEEE Trans. on
Softw. Eng., 24(11):927{948, Nov. 1998.

[22] C. Heitmeyer, J. Kirby, B. Labaw, and R. Bharadwaj. SCR*: A toolset for specifying
and analyzing software requirements. In 10th Intl. Conf. on Computer Aided Veri�cation
(CAV'98), volume 1427 of Lect. Notes in Comp. Sci., pages 526{531. Springer-Verlag, 1998.

[23] C. Heitmeyer and N. Lynch. The Generalized Railroad Crossing: A case study in formal
veri�cation of real-time systems. In Proc., Real-Time Systems Symp., San Juan, Puerto
Rico, Dec. 1994.

[24] C. Heitmeyer and N. Lynch. The Generalized Railroad Crossing: A case study in formal
veri�cation of real-time systems. Technical Report MIT/LCS/TM-51, Lab. for Comp. Sci.,
MIT, Cambridge, MA, 1994. Also Technical Report 7619, NRL, Wash., DC 1994.

[25] C. L. Heitmeyer, R. D. Je�ords, and B. G. Labaw. Automated consistency checking of
requirements speci�cations. ACM Transactions on Software Engineering and Methodology,
5(3):231{261, April{June 1996.

[26] K. Heninger, D. L. Parnas, J. E. Shore, and J. W. Kallander. Software requirements for
the A-7E aircraft. Technical Report 3876, Naval Research Lab., Wash., DC, 1978.

[27] D. Hutter. Annotated reasoning. In B. Gramlich, H. Kirchner, and F. Pfenning, editors,
Proceedings of the FLoC'99 Workshop on Strategies in Automated Deduction (STRATE-
GIES'99), Trento, Italy, pages 37{50, July 1999.

[28] James Kirby, Jr., M. Archer, and C. Heitmeyer. Applying formal methods to an information
security device: An experience report. In Proc. 4th IEEE International Symposium on High
Assurance Systems Engineering (HASE '99). IEEE Comp. Soc. Press, November 1999.

[29] James Kirby, Jr., M. Archer, and C. Heitmeyer. SCR: A practical approach to building a
high assurance COMSEC system. In Proc. 15th Annual Computer Security Applications
Conference (ACSAC '99). IEEE Comp. Soc. Press, December 1999.

[30] R. Je�ords. Private communication. NRL, 1998.
[31] R. Je�ords and C. Heitmeyer. Automatic generation of state invariants from requirements

speci�cations. In Proc. 6th International Symposium on the Foundations of Software En-
gineering (FSE-6), Orlando, FL, November 1998.

[32] S. Kalvala. Annotations in formal speci�cations and proofs. Formal Methods in System
Design, 5(1/2), 1994.

[33] P. KelloMaki. Mechanical Veri�cation of Invariant Properties of DisCo Speci�cations. PhD
thesis, Tampere University of Technology, Finland, November 1997.

42 Myla Archer / TAME: Using PVS Strategies

[34] L. Lamport. How to write a proof. Technical report, Digital Equipment Corp., System
Research Center, February 1993. Research Report 94.

[35] G. Leeb and N. Lynch. Proving safety properties of the Steam Boiler Controller: Formal
methods for industrial applications: A case study. In J.-R. Abrial, et al., eds., Formal
Methods for Industrial Applications: Specifying and Programming the Steam Boiler Control,
vol. 1165 of Lect. Notes in Comp. Sci. Springer-Verlag, 1996.

[36] P. Lincoln. Private communication. July, 1998.
[37] V. Luchangco. Using simulation techniques to prove timing properties. Master's thesis,

Massachusetts Institute of Technology, June 1995.
[38] R. R. Lutz and H.-Y. Shaw. Applying the SCR* requirements toolset to DS-1 fault pro-

tection. Technical Report JPL-D15198, Jet Propulsion Lab., Pasadena, CA, Dec. 1997.
[39] N. Lynch and M. Tuttle. An introduction to Input/Output automata. CWI-Quarterly,

2(3):219{246, September 1989. Centrum voor Wiskunde en Informatica, Amsterdam, The
Netherlands.

[40] N. Lynch and F. Vaandrager. Forward and backward simulations { Part II: Timing-based
systems. Information and Computation, 128(1):1{25, July 1996.

[41] S. Miller. Specifying the mode logic of a ight guidance system in CoRE and SCR. In
Proc. 2nd Workshop on Formal Methods in Software Practice (FMSP'98), 1998.

[42] O. Mueller. A Veri�cation Environment for I/O Automata Based on Formalized Meta-
Theory. PhD thesis, Technische Universitaet Muenchen, September 1998.

[43] D. L. Parnas, G. Asmis, and J. Madey. Assessment of safety-critical software in nuclear
power plants. Nuclear Safety, 32(2):189{198, April{June 1991.

[44] E. Riccobene, M. Archer, and C. Heitmeyer. Applying TAME to I/O automata: A user's
perspective. Technical Report NRL/MR/5540{00-8448, NRL, Wash., DC, 2000.

[45] J. Richardson and A. Bundy. Proof planning methods as schemas. Journal of Symbolic
Computation, 11, 1999.

[46] J. Romijn. Tackling the RPC-Memory Speci�cation Problem with I/O automata. Adden-
dum. URL http://www.cwi.nl/�judi/papers/ dagstuhl proofs.ps.gz.

[47] J. Romijn. Tackling the RPC-Memory Speci�cation Problem with I/O automata. In
M. Broy, S. Merz, and K. Spies, editors, Formal Systems Speci�cation | The RPC-Memory
Speci�cation Case, volume 1169 of Lect. Notes in Comp. Sci., pages 437{476. Springer-
Verlag, 1996.

[48] N. Shankar, S. Owre, and J. Rushby. The PVS proof checker: A reference manual. Technical
report, Computer Science Lab., SRI Intl., Menlo Park, CA, 1993.

[49] J. Skakkebaek and N. Shankar. Towards a duration calculus proof assistant in PVS. In
Third Intern. School and Symp. on Formal Techniques in Real Time and Fault Tolerant
Systems, Lect. Notes in Comp. Sci. 863. Springer-Verlag, 1994.

[50] H. B. Weinberg. Correctness of vehicle control systems: A case study. Master's thesis,
Massachusetts Institute of Technology, February 1996.

Appendix

A. The I/O Automaton TIP

Below is the speci�cation of the I/O automaton TIP from [15]. It �rst lists
the actions, classifying them as to whether they are input, output, or internal
actions (TIP has no input actions). It then lists the state variables, giving their
types, and describes the set of initial states. Finally, it describes all the actions
in terms of their preconditions and e�ects.

Myla Archer / TAME: Using PVS Strategies 43

Internal: ADD CHILD, CHILDREN KNOWN, RESOLVE CONTENTION, ACK
Output: ROOT

State Variables: init : V! Bool

contention : V! Bool
root : V! Bool

child : E! Bool
mq : E! Bool�

Init: 8v; e : init[v]
^:contention[v]
^:root[v]
^:child[e]
^mq[e] = empty

Actions:

ADD CHILD(e : E)
Precondition :
^init[target(e)]
^mq[e] 6= empty

E�ect :
child[e] := 1
mq[e] := tl(mq[e])

ACK(e : E)
Precondition :
^:init[target(e)]
^mq(e) 6= empty

E�ect :
contention[target(e)] := :hd(mq[e])
mq[e] := tl(mq[e])

RESOLV E CONTENTION(e : E)
Precondition :
^contention[source(e)]
^contention[target(e)]

E�ect :
child[e] := 1
contention[source(e)] := 0
contention[target(e)] := 0

ROOT (v : V)
Precondition :
^:init[v]
^:contention[v]
^:root[v]
^8e 2 to(v) : child[e]

E�ect :
root[v] := 1

CHILDREN KNOWN(v : V)
Precondition :
^init[v]
^8e; f 2 to(v) : child[e] _ child[f] _ e = f

E�ect :
init[v] := 0
for e 2 from(v)domq[e] := append(child[e�1]; mq[e])

The type E in the above speci�cation corresponds to the type Edges in the TAME
formulations of Invariants I10 and I13. The type Bool� in the speci�cation is lists
of booleans; thus, the variable mq maps an edge to a list of booleans.

The properties from [15] referenced in the lemmas and proofs in Section 4.1
are shown below. In TAME, representing the value of a state variable in a given
state is done by using the state as an additional argument to the variable. Thus,
mq[e] in the properties below is represented as mq(e,s) in TAME. Further, empty,
hd, and e�1 are represented as null, car, and reverse edge(e) in TAME.

Invariant I2. If a node is in the initial stage then its outgoing links are empty.
I2(e) � init[source(e)]!mq[e] = empty

Invariant I5. Each link contains at most one message at a time.
I5(e) � length(mq[e]) � 1

Invariant I8. If a node is involved in root contention, then all its incoming links are

empty.

I8(e) � contention[target(e)]!mq[e] = empty

Invariant I10. A node never sends a parent request to its children.

I10(e) �mq[e] 6= empty ^ :hd(mq[e])! :child[e�1]

Invariant I13. All the incoming links of a root node are child links.

I13(e) � root[target(e)]! child[e]

44 Myla Archer / TAME: Using PVS Strategies

B. TAME Strategies

TAME currently provides more than twenty proof steps for proving prop-
erties of LV timed automata, I/O automata, and SCR automata through PVS
strategies. Figure 13 lists the major TAME strategies and describes, for each
strategy, the proof step it implements and when this proof step is appropriate in
a proof.

iii
Proof Step TAME Strategy Remarksiii

Break down into base case and AUTO_INDUCT For starting an induction
induction (i.e., action) cases proof; only nontrivial

cases produce subgoalsiii
Appeal to precondition of an APPLY_SPECIFIC_PRECOND Used, when needed,
action in induction casesiii
Apply the inductive hypothesis APPLY_IND_HYP Used, when needed, in
to values other than skolem induction cases; needs
constants of inductive conclusion argumentsiii
Perform the usual first steps DIRECT_PROOF For starting a direct
of a non-induction proof proof of an invariantiii
Apply an auxiliary invariant APPLY_INV_LEMMA Used in any proof;
lemma needs argument(s)iii
Break down into cases based SUPPOSE Used in any proof;
on a predicate needs boolean argumentiii
Apply “obvious” reasoning, e.g., TRY_SIMP Used for “it is now
propositional, equational, datatype obvious ” in any proofiii
Use a fact from the mathematical APPLY_LEMMA Used in any proof;
theory for a state variable type needs argument(s)iii
Introduce the relationships among CONST_FACTS Introduces the facts from
specification constants the axiom const_factsiii
Attempt to skolemize a quantified SKOLEM_IN Used in any proof;
formula ‘‘in place’’ needs argumentsiii
Attempt to instantiate a quantified INST_IN Used in any proof;
formula ‘‘in place’’ needs argumentsiii
Apply the Hilbert εε axiom USE_EPSILON For proofs referring
to a predicate to εε expressionsiii
Instantiate the existentially EPSILON_WITNESS For the companion
quantified formula created by proof branch created by
USE_EPSILON USE_EPSILONiii
Attempt to prove a state or SCR_INV_PROOF Specialized for SCR automata;
transition invariant automatically tries using generated invariants

to finish proofsiii
Attempt to prove a state SCR_INDUCT_PROOF Specialized for SCR automata
invariant automaticallyiii
Attempt to prove a transition SCR_DIRECT_PROOF Specialized for SCR automata
invariant automaticallyiii
Display details of the state ANALYZE Specialized for SCR automata
transition in a proof dead-endiii
Introduce and name the last event NAME_LAST_EVENT For timed executions;
ππ before state-occurence s satisfying needs arguments; creates
property P(ππ,s) existence proof obligationiii
Introduce and name the first event NAME_FIRST_EVENT For timed executions;
ππ before state-occurence s satisfying needs arguments; creates
property P(ππ,s) existence proof obligationiiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 13. The major TAME strategies.

Myla Archer / TAME: Using PVS Strategies 45

C. Some PVS Commands

A sample of major PVS strategy-building commands is shown in Figure 14.
Figure 15 shows those standard PVS proof commands referred to in this paper.

iii
PVS Command Arguments Effectiii
APPLY A strategy Turns a strategy into a defined ruleiii
THEN A list of proof Applies the proof commands in order down

commands all proof branchesiii
TRY Three proof commands Tries the first proof command; if it succeeds,

TRY applies the second; if not, TRY applies
the third.iii

IF A condition and two Evaluates the condition; if the result is true,
proof commands IF applies the first command; if false, IF

applies the secondiii
BRANCH A proof command and a Applies the command and spreads

list of proof commands application of the list of commands over the
new subgoals; the last command in the list
is repeated on any extra subgoalsiii

REPEAT A proof command Iterates the command down the main proof
branchiii

REPEAT* A proof command Iterates the command down all proof branchesiii
WITH-LABELS A proof command and a Applies the command, and labels the new

list of lists of labels formulae in each generated subgoal with
its corresponding list of labelsiiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 14. Strategy-building commands (\strategicals") in PVS.

ii
PVS Command Arguments Effectii
SIMPLIFY Optional arguments control kinds Applies Shostak decision procedures and

and location of simplification and any additional simplifications requestedii
ASSERT A subset of the arguments to SIMPLIFY, with rewriting and recording

SIMPLIFY of facts for future useii
INST Formula number and Instantiates antecedent universal and

instantiations consequent existental formulaeii
EXPAND function name and (optional) Expands a function definition and may do

formula number(s) simplificationsii
FLATTEN Formula number(s) (optional) Separates antecedent conjunctions and

consequent disjunctions or implications
into distinct formulaeii

SPLIT Formula numbers(s) (optional) Separates antecedent disjunctions and
implications and consequent conjunctions,
yielding new subgoalsii

PROP None Applies FLATTEN and SPLIT to the
extent possibleii

LIFT-IF Formula number(s) (optional) Lifts an embedded IF_THEN_ELSE to the
top levelii

FAIL None Causes the current proof branch to failii
GRIND None Undertake an automatic proofiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 15. PVS proof commands referred to in this paper.

